Browse > Article
http://dx.doi.org/10.5695/JKISE.2016.49.6.521

Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes  

Oh, Kiseok (Department of Chemistry and Chemical Engineering, Inha University)
Yoo, Hyeonseok (Department of Chemistry and Chemical Engineering, Inha University)
Lee, Gibaek (Department of Chemistry and Chemical Engineering, Inha University)
Choi, Jinsub (Department of Chemistry and Chemical Engineering, Inha University)
Publication Information
Journal of the Korean institute of surface engineering / v.49, no.6, 2016 , pp. 521-529 More about this Journal
Abstract
In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.
Keywords
Anodization; Doping; Molybdenum; HER; $TiO_2$ nanotube;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Z. Wang, L. Zhou, and X.W. Lou, Metal oxide hollow nanostructures for Lithium-ion batteries, Adv. Mater. 24 (2012) 1903-1911.   DOI
2 J. M. Macak, H. Tsuchiya, A. Ghicov, K. Yasuda, R. Hahn, S. Bauer, and P. Schmuki, $TiO_2$ nanotubes: Self-organized electrochemical formation, properties and applications, Curr. Opin. Solid State Mater. Sci. 11 (2007) 3-18.   DOI
3 Y. Jo, I. Jung, I. Lee, J. Choi and Y. Tak, Fabrication of through-hole $TiO_2$nanotubes by potential shock, Electrochem, Commun. 12 (2010) 616-619.   DOI
4 H. Yoo, Y.-W, Choi, and J. Choi, Ruthenium oxide-doped $TiO_2$ nanotubes by Single-step anodization for water-oxidation applications, ChemCatChem 7 (2015) 643-647.   DOI
5 S. Kim, H. Yoo, O. Rhee, and J. Choi, Doping of pt into anodic $TiO_2$ nanotubes for water oxidation: Underpotential shock method in Cl-solution, J. Phys. Chem. C 119, (2015) 21497-21503. .   DOI
6 M. Seong, S. Kim, H. Yoo and J. Choi, Doping of anodic nanotubular $TiO_2$ electrodes with MnO2 for use as catalysts in water oxidation, Catal. Today 260 (2016) 135-139.   DOI
7 D. Lee, Y. -W. Choi, Y. -S. Na, S. -S. Choi, D.- W. Park, and J. Choi, $Fe_2O_3$ nanopowders prepared by a thermal plasma process for water oxidation, Mater. Res. Bull. 68 (2015) 221-226.   DOI
8 Y. -W. Choi, S. Kim, M. Seong, H. Yoo and J. Choi, $NH_4$-doped anodic $WO_3$ prepared through anodization and subsequent $NH_4$OH treatment for water splitting, Appl. Surf. Sci. 324 (2015) 414-418.   DOI
9 W. F. Zhang, Y. L. He, M. S. Zhang, Z. Yin, and Q. Chen. Raman scattering study on anatase $TiO_2$ nanocrystals, J. Phys. D: Appl. Phys. 33 (2000) 912-916.   DOI
10 D. Su, J. Wang, Y. Tang, C. Liu, L. Liu, and X. Han, Constructing $WO_3$/$TiO_2$ composite structure towards sufficient use of solar energy, Chem. Commun. 47 (2011) 4231-4233.   DOI
11 A. Cimino and B. A. De Angelis, The application of X-Ray photoelectron spectroscopy to the study of molybdenum oxides and supported molybdenum oxide catalysts, J. Catal., 36 (1975) 11-22.   DOI
12 L. Ran, D. zhao, X. Gao, and L. Yin, Highly crystalline Ti-doped $SnO_2$ hollow structured photocatalyst with enhanced photocatalytic activity for degradation of organic dyes, CrystEngComm 17 (2015) 4225-4237.   DOI
13 P. K. Khatri, M. Aila, J. Porwal, S. Kaul, and S. L. Jain, Industrial resin "INDION 130", modified with vanadyl cations as highly efficient heterogeneous catalyst for epoxidation of fatty compounds with TBHP as oxidant, New J. Chem. 39 (2015) 5960-5965.   DOI
14 B. E. Conway, B. V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of $H_2$, and the role of chemisorbed H, Electrochim. Acta 47 (2012) 3571-3594
15 J. Rajeswari, P. S. Kishore, B. Viswanathan, and T.K. Varadarajan, Facile hydrogen evolution reaction on $WO_3$ nanorods, Nanoscale Res. Lett. 2 (2007) 496-503   DOI
16 E. Skulason, V. Tripkovic, M. E. Bjoketun, S. Gudmundsdotir, G. Karlberg, J. Rossmeisl, T. Bligaard, H. Josson,§, and J. K. Norskov, Modeling the electrochemical hydrogen oxidation and evolution reactions on the basis of density functional theory calculations, J. Phys. Chem. C 114 (2010) 18182-18197   DOI
17 Z. Luo, R. Miao, T. D. Huan, I. M. Mosa, A. S. Poyraz, W. Zhong, J. E. Cloud, D. A. Kriz, S. Thanneeru, J. He, Y. Zhang, R. Ramprasad, and S. L. Suib, Mesoporous $MoO_{3-x}$ material as an efficient electrocatalyst for hydrogen evolution reactions, Adv. Energy Mater. 6 (2016) doi:10.1002/aenm.201600528   DOI
18 X. K. Hu, T. T. Qian, Z. T. Song, J. R. Huang, R. Cao and J. Q. Xiao, Comparative study on MoO3 and $H_xMoO_3$ nanobelts: structure and electric transport, Chem. Mater. 20 (2008) 1527-1533   DOI
19 L. Zheng, Y. Xu, D. Jin, and Y. Xie, Novel metastable hexagonal $MoO_3$ nanobelts: synthesis, photochromic, and electrochromic properties, Chem. Mater. 21 (2009) 5681-5690.   DOI
20 H. Sinaim, D. J. Ham, J. S. Lee, A. Phuruangrat, S. Thongtem, and T. Thongtem, Free-polymer contorlling morpholgy of $\alpha$-$MoO_3$ nanobelts by a facile hydrothermal synthesis, their electrochemistry for hydrogen evolution reactions and optical properties, J. Alloy. Comp. 516 (2012) 172-178   DOI
21 Y. Liu, W. E. Mustain, Evalutation of ungsten carbide as the electrocatalyst support for platinum hydrogen evolution/oxidation catalysts, Int. J. Hydrogen Energy 37 (2012) 8929-8938   DOI
22 S. B. Patel, A. Hamlekhan, D. Royhman, A. Butt, J. Yuan, T. Shokuhfar, C. Sukotjo,,M. T. Mathew, G. Jursich, and C. G. Takoudis, Enhancing surface characteristics of ti-6al-4v for bio-implants using integrated anodization and thermal oxidation, J Mater. Chem., B 2 (2014) 3597-3608.   DOI
23 D. Voiry, H. Yamaguchi, J. Li, R. Silva, D.C.B. Alves, T. Fujita, M. Chen, T. Asefa, V. B. Shenoy, G. Eda, and M. Chhowalla, Enhanced catalytic activity in strained chemically exfoliated $WS_2$ nanosheets for hydrogen evolution, Nat. Mater. 12(2013) 850-855   DOI
24 M. A. Lukowski, A. S. Daniel, C. R. English, F. Meng, A. Forticaux, R. J. Hamers, and S. Jin, Highly active hydrogen evolution catalysis from metallic WS2 nanosheets, Energy Environ. Sci. 7 (2014) 2608-2613   DOI
25 M. A. Pena, J. P. Gomez, and J. L. G. Fierro, New catalytic routes for syngas and hydrogen production, Appl. Catal,. A 144, (1996) 7-57.   DOI
26 S. Singh, S. Jain, V. PS, A. K. Tiwari, M. R. Nouni, J. K. Pandey, and S. Goel, Hydrogen: A sustainable fuel for future of the transport sector, Renew. Sustainable Energy Rev. 51 (2015) 623-633.   DOI
27 J. D. Holladay, J. Hu, D. L. King, and Y. Wang, An overview of hydrogen production technologies, Catal. Today 139 (2009) 244-260.   DOI
28 J. Rossmeisl, A. Logadottir, J. K. Norskov, Electrolysis of water on (oxidized) metal surfaces, Chem. Phys. 319 (2005) 178-184.   DOI
29 S. Minagar, C. C. Berndt, J. Wang, E. Ivanova, and C. Wen, A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces, Acta biomaterialia 8 (2012) 2875-2888.   DOI