Browse > Article
http://dx.doi.org/10.3938/jkps.73.1867

Nickel Doping on Cobalt Oxide Thin Film Using by Sputtering Process-a Route for Surface Modification for p-type Metal Oxide Gas Sensors  

Kang, Jun-gu (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University)
Park, Joon-Shik (Smart Sensor Research Center, Korea Electrical Technology Institute (KETI))
An, Byeong-Seon (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University)
Yang, Cheol-Woong (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University)
Lee, Hoo-Jeong (School of Advanced Materials Sciences & Engineering, Sungkyunkwan University)
Abstract
This study proposes a route for surface modification for p-type cobalt oxide-based gas sensors. We deposit a thin layer of Ni on the Co oxide film by sputtering process and annealed at $350^{\circ}C$ for 15 min in air, which changes a typical sputtered film surface into one interlaced with a high density of hemispherical nanoparticles. Our in-depth materials characterization using transmission electron microscopy discloses that the microstructure evolution is the result of an extensive inter-diffusion of Co and Ni, and that the nanoparticles are nickel oxide dissolving some Co. Sensor performance measurement unfolds that the surface modification results in a significant sensitivity enhancement, nearly 200% increase for toluene (at $250^{\circ}C$) and CO (at $200^{\circ}C$) gases in comparison with the undoped samples.
Keywords
RF sputtering; Ni-doped; Co oxide thin film; Gas sensor; CO; Toluene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Selvakumar, P. Rajeshkumar, N. Dharmaraj and N. Kumar, Mater Today-Proc 3, 1725 (2016).   DOI
2 T. Zhang, L. Liu, Q. Qi, S. Li and G. Lu, Sensor Actuat. B-Chem 139, 287 (2009).   DOI
3 F. Gyger et al., Particle & Particle Systems Characterization 31, 591 (2014).   DOI
4 J-K. Choi et al., Sensor Actuat. B-Chem 150, 191 (2010).   DOI
5 S. Tian et al., Rsc Advances 3, 11823 (2013).   DOI
6 J-g. Kang, J-S. Park and H-J. Lee, Sensor Actuat. B-Chem 248, 1011 (2017).   DOI
7 G. Korotcenkov, V. Brinzari, L. Gulina and B. Cho, App. Surf. Sci. 353, 793 (2015).   DOI
8 N. Yamazoe, Y. Kurokawa and T. Seiyama, Sensor Actuat. 4, 283 (1983).   DOI
9 G. Korotcenkov, Mater. Sci. Eng: R: Reports 61, 1 (2008).   DOI
10 X. San et al., J. Alloy Compd. 636, 357 (2015).   DOI
11 S. C. Petitto, E. M. Marsh, G. A. Carson, M. A. Langell and J. Mol, Catal. A-Chem. 281, 49 (2008).   DOI
12 J. Xu and J. Cheng, J. Alloy Compd. 686, 753 (2016).   DOI
13 J. Y. Kim et al., J. Phys. Chem. C 118, 25994 (2014).   DOI
14 N. Shaalan, M. Rashad, A. Moharram and M. Abdel-Rahim, Mat. Sci. Semicon. Proc. 46, 1 (2016).   DOI
15 Z. Wen et al., Sensor Actuat. B-Chem 186, 172 (2013).   DOI
16 W-Y. Li, L-N. Xu and J. Chen, Adv. Funct. Mater. 15, 851 (2005).   DOI
17 S. Deng et al., Sensor Actuat. B-Chem 233, 615 (2016).   DOI
18 J-W. Yoon, H-J. Kim, H-M. Jeong and J-H. Lee, Sensor Actuat. B-Chem 202, 263 (2014).   DOI
19 T. Zhou et al., Sensor Actuat. B-Chem 242, 369 (2017).   DOI
20 H-M. Jeong, H-J. Kim, P. Rai, J-W. Yoon and J-H. Lee, Sensor Actuat. B-Chem 201, 482 (2014).   DOI
21 C. Stella, N. Soundararajan and K. Ramachandran, J. Mater. Sci-Mater El. 26, 4178 (2015).   DOI
22 T. Akamatsu, T. Itoh, N. Izu, W. Shin and K. Sato, Sensors 15, 8109 (2015).   DOI
23 Y. Zhu et al., J. Power Sources 267, 888 (2014).   DOI
24 N. Appandairajan and J. Gopalakrishnan, P. Indian As-CHEM Sci 87, 115 (1978).
25 Y. E. Roginskaya, O. Morozova, E. Lubnin, Y. E. Ulitina, G. Lopukhova and S. Trasatti, Langmuir 13, 4621 (1997).   DOI
26 L. Hu, L. Wu, M. Liao, X. Hu and X. Fang, Adv. Funct. Mater. 22, 998 (2012).   DOI
27 J. Tareen et al., Mater. Res. Bull. 19, 989 (1984).   DOI
28 Y. Shimizu, $SnO_2$ Gas Sensor. In Encyclopedia of Applied Electrochemistry, edited by G. Kreysa, K-I. Ota and R. F. Savinell (Springer New York: New York, NY, 2014), p 1974.
29 J. M. Suh et al., ACS Appl. Mater. Inter. 10, 1050 (2017).
30 J. Robin, Ann Chim(Paris) 10, 389 (1955).