DOI QR코드

DOI QR Code

Effect of PDMS Index Matching Layer on Characteristics of Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO Transparent Electrode

PDMS 굴절 조정층이 Mn-Doped SnO2 (MTO)/Ag/MTO/PDMS/MTO 투명전극의 특성에 미치는 영향

  • Jo, Young-Su (Department of Materials Engineering, Chungbuk National University) ;
  • Jang, Gun-Eik (Department of Materials Engineering, Chungbuk National University)
  • Received : 2018.07.26
  • Accepted : 2018.08.17
  • Published : 2018.09.01

Abstract

We fabricated highly flexible Mn-doped $SnO_2$ (MTO)/Ag/MTO/polydimethylsiloxane (PDMS)/MTO multilayer transparent conducting films. To reduce refractive-index mismatching of the MTO/Ag/MTO/polyethylene terephthalate (PET), index-matching layers were inserted between the oxide-metal-oxide-structured films and the PET substrate. The PDMS layer was deposited by spin-coating after adjusting the mixing ratio of PDMS and hexane. We investigated the effects of the index-matching layer on the color and reflectance differences with different PDMS dilution ratios. As the dilution ratio increased from 1:100 to 1:130, the color difference increased slightly, while the reflectance difference decreased from 0.62 to 0.32. The MTO/Ag/MTO/PDMS/MTO film showed a transmittance of 87.18~87.68% at 550 nm. The highest value of the Haacke figure of merit was $47.54{\times}10^{-3}{\Omega}^{-1}$ for the dilution ratio of 1:130.

Keywords

References

  1. K. Alzoubi, M. M. Hamasha, S. Lu, and B. Sammakia, J. Disp. Technol., 7, 593 (2011). [DOI: https://doi.org/10.1109/JDT.2011.2151830]
  2. H. J. Moon, T. K. Gong, D. Kim, D. H. Choi, and D. I. Son, Trans. Electr. Electron. Mater., 17, 18 (2016). [DOI: http://doi.org/10.4313/TEEM.2016.17.1.18]
  3. J. H. Kim, H. K. Lee, J. Y. Na, S. K. Kim, Y. Z. Yoo, and T. Y. Seong, Ceram. Int., 41, 8059 (2015). [DOI: https://doi.org/10.1016/j.ceramint.2015.03.002]
  4. C. Guillen and J. Herrero, Thin Solid Films, 520, 1 (2011). [DOI: https://doi.org/10.1016/j.tsf.2011.06.091]
  5. Z. M. Jarzebski and J. P. Morton, J. Electrochem. Soc., 123, 333C (1976). [DOI: https://doi.org./10.1149/1.2132647]
  6. J. G. Kim, S. M. Yoon, and G. E. Jang, J. Ceram. Process. Res., 17, 80 (2016).
  7. J. G. Kim and G. E. Jang, J. Ceram. Process. Res., 17, 103 (2016).
  8. D. Chen, Sol. Energy Mater. Sol. Cells, 68, 313 (2001). [DOI: https://doi.org/10.1016/S0927-0248(00)00365-2]
  9. C. H. Hong, J. H. Shin, B. K. Ju, K. H. Kim, N. M. Park, B. S. Kim, and W. S. Cheong, J. Nanosci. Nanotechnol., 13, 7756 (2013). [DOI: https://doi.org/10.1166/jnn.2013.7814]
  10. A. L. Thangawng, R. S. Ruoff, M. A. Swartz, and M. R. Glucksberg, Biomed. Microdevices, 9, 587 (2007). [DOI: https://doi.org/10.1007/s10544-007-9070-6]
  11. G. Haacke, J. Appl. Phys., 47, 4086 (1976). [DOI: https://doi.org/10.1063/1.323240]
  12. S. M. Yoon, J. W. Choi, and G. E. Jang, J. Nanosci. Nanotechnol., 17, 7218 (2017). [DOI: https://doi.org/10.1166/jnn.2017.14753]