• Title/Summary/Keyword: Discrete-time system

Search Result 1,149, Processing Time 0.032 seconds

Patient Flow Optimization for Outpatient Department Using Discrete-Event Simulation

  • Dieu, Xuan-Manh;Hoang, Huu-Trung;Kim, Jung Eon;Kim, Hoon;Park, Junseok;Hwang, Won-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.7
    • /
    • pp.804-814
    • /
    • 2019
  • The patient's waiting time and length of stay have been reported as a factor decreasing their satisfaction in the hospital, especially in developing countries. This paper focuses on modeling hospital's outpatient department workflow in a developing country and optimizing the patient waiting time as well as total length of stay. By using discrete-event simulation, many alternative scenarios have raised, such as adding more working time, altering human resources, and adjusting the staff's responsibility, those scenarios will be examined to explore better settings for the hospital. The results show that possible to achieve a 9.6% reduction in patient total length of stay and it could be accomplished without adding more resources to the hospital.

Arc Detection Performance and Processing Speed Improvement of Discrete Wavelet Transform Algorithm for Photovoltaic Series Arc Fault Detector (태양광 직렬 아크 검출기의 검출 성능 및 DWT 알고리즘 연산 속도 개선)

  • Cho, Chan-Gi;Ahn, Jae-Beom;Lee, Jin-Han;Lee, Ki-Duk;Lee, Jin;Ryoo, Hong-Jae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.1
    • /
    • pp.32-37
    • /
    • 2021
  • This study proposes a DC series arc fault detector using a frequency analysis method called the discrete wavelet transform (DWT), in which the processing speed of the DWT algorithm is improved effectively. The processing time can be shortened because of the time characteristic of the DWT result. The performance of the developed DC series arc fault detector for a large photovoltaic system is verified with various DC series arc generation conditions. Successful DC series arc detection and improved calculation time were both demonstrated through the measured actual arc experimental result.

Discrete-Time Feedback Error Learning with PD Controller

  • Wongsura, Sirisak;Kongprawechnon, Waree
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1911-1916
    • /
    • 2005
  • In this study, the basic motor control system had been investigated. The Discrete-Time Feedback Error Learning (DTFEL) method is used to control this system. This method is anologous to the original continuous-time version Feedback Error Learning(FEL) control which is proposed as a control model of cerebellum in the field of computational neuroscience. The DTFEL controller consists of two main parts, a feedforward controller part and a feedback controller part. Each part will deals with different control problems. The feedback controller deals with robustness and stability, while the feedforward controller deals with response speed. The feedforward controller, used to solve the tracking control problem, is adaptable. To make such the tracking perfect, the adaptive law is designed so that the feedforward controller becomes an inverse system of the controlled plant. The novelty of FEL method lies in its use of feedback error as a teaching signal for learning the inverse model. The PD control theory is selected to be applied in the feedback part to guarantee the stability and solve the robust stabilization problems. The simulation of each individual part and the integrated one are taken to clarify the study.

  • PDF

A Design on Robust Model Following Servo System Using $\delta$--Operator ($\delta$-연산자를 이용한 강인한 모델 추종형 서보 제어 시스템의 구성에 관한연구)

  • Kim, Chung-Tek;Hwang, Hyun-Joon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.2
    • /
    • pp.121-126
    • /
    • 2000
  • In the fast sampling limit the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that covers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control system The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

Solvability of Stochastic Discrete Algebraic Riccati Equation

  • Oh, Kyu-Kwon;Okuyama, Yoshifumi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.33.4-33
    • /
    • 2001
  • This paper considers a stochastic discrete algebraic Riccati equation, which is a generalized version of the well-known standard discrete algebraic Riccati equation, and has additional linear terms. Under controllability, observability and the assumption that the additional terms are not too large, the existence of a positive definite solution is guaranteed. It is shown that it arises in optimal control of a linear discrete-time system with multiplicative White noise and quadratic cost. A numerical example is given.

  • PDF

A new scheme for discrete implicit adaptive observer and controller (이산형 적응관측자 및 제어기의 새로운 구성)

  • 고명삼;허욱열
    • 전기의세계
    • /
    • v.30 no.12
    • /
    • pp.822-831
    • /
    • 1981
  • Many different schemes of the adaptive observer and controller have been developed for both continuous and discrete systems. In this paper we have presented a new scheme of the reduced order adaptive observer for the single input discrete linear time invariant plant. The output equation of the plant, is transformed into the bilinear form in terms of system parameters and the states of the state variable filters. Using the plant output equation the discrete implicit adaptive observer based on the similar philosophy to Nuyan and Carroll is derived and the parameter adaptation algorithm is derived based on the exponentially weighted least square method. The adaptive model following control system is also constructed according to the proposed observer scheme. The proposed observer and controller are rather than simple structure and have a fast adaptive algorithm, so it may be expected that the scheme is suitable to the practical application of control system design. The effectiveness of the algorithm and structure is illustrated by the computer simulation of a third order system. The simulation results show that the convergence speed is proportinal to the increasing of weighting factor alpha, and that the full order and reduced order observer have similar convergence characteristics.

  • PDF

A Design on Robust Model Following Servo System using $\delta$- Operator ($\delta$- 연산자를 이용한 강인한 모델 추종형 서보 시스템의 구성에 관한 연구)

  • Kim, Jeong-Taek;Lee, Hwa-Seok;Park, Seong-Jun;Chu, Yeong-Bae;Hwang, Hyeon-Jun;Lee, Yang-U;Park, Jun-Ho
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.747-752
    • /
    • 1999
  • In the fast sampling limit, the delta operator model tends to the analog system model. This fundamental property of the delta operator model unifies continuous and discrete time control system. In this paper, we study robust linear optimal model following servo system in the presence of disturbances and parameter perturbations. A technique to directly design the generalized differential operator based unified control system that convers both differential operator based continuous time and delta operator based discrete time case is presented. The quadratic criterion function for a linear system is used to design the robust unified servo control. The characteristics of the proposed servo system are analysed and simulated to verify the robustness.

  • PDF

Stability Bound for Time-Varying Uncertainty of Time-varying Discrete Interval System with Time-varying Delay Time (시변 지연시간을 갖는 이산 구간 시변 시스템의 시변 불확실성의 안정범위)

  • Han, Hyung-seok
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.608-613
    • /
    • 2017
  • In this paper, we consider the stability bound for uncertainty of delayed state variables in the linear discrete interval time-varying systems with time-varying delay time. The considered system has an interval time-varying system matrix for non-delayed states and is perturbed by the unstructured time-varying uncertainty in delayed states with time-varying delay time within fixed interval. Compared to the previous results which are derived for time-invariant cases and can not be extended to time-varying cases, the new stability bound in this paper is applicable to time-varying systems in which every factors are considered as time-varying variables. The proposed result has no limitation in applicable systems and is very powerful in the aspects of feasibility compared to the previous. Furthermore. the new bound needs no complex numerical algorithms such as LMI(Linear Matrix Inequality) equation or upper solution bound of Lyapunov equation. By numerical examples, it is shown that the proposed bound is able to include the many existing results in the previous literatures and has better performances in the aspects of expandability and effectiveness.

POWER TAIL ASYMPTOTIC RESULTS OF A DISCRETE TIME QUEUE WITH LONG RANGE DEPENDENT INPUT

  • Hwang, Gang-Uk;Sohraby, Khosrow
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.1
    • /
    • pp.87-107
    • /
    • 2003
  • In this paper, we consider a discrete time queueing system fed by a superposition of an ON and OFF source with heavy tail ON periods and geometric OFF periods and a D-BMAP (Discrete Batch Markovian Arrival Process). We study the tail behavior of the queue length distribution and both infinite and finite buffer systems are considered. In the infinite buffer case, we show that the asymptotic tail behavior of the queue length of the system is equivalent to that of the same queueing system with the D-BMAP being replaced by a batch renewal process. In the finite buffer case (of buffer size K), we derive upper and lower bounds of the asymptotic behavior of the loss probability as $K\;\longrightarrow\;\infty$.

A note on an adaptive control to certain discrete-time linear system with 2 ordered performance function

  • Munakata, Tsunehiro;Tojo, Shin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.862-865
    • /
    • 1989
  • The authors, in this paper, investigate the degree of tracking (i.e. the weak points of Samson) to this discrete-time adaptive control system. A matter of course, the results of tracking is improved by using g given in 2.2, compared with the results of Samson. But it is a neck point that the calculation on g is very complex. So by giving the value of g suitably, it is shown that the result superior to one of Samson are taken.

  • PDF