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Abstract

Many different schemes of the adaptive observer and controller have been developed for both
continnous and discrete systems.

In this paper we have presented a new scheme of the reduced order adaptive observer for the
single input discrete linear time invariant plant. The output equation of the plant is transformed
into the bilinear form in terms of system parameters and the states of the state variable filters.
Using the plant output equation the discrete implicit adaptive observer based on the similar philo.
sophy to Nuyan and Carroll is derived and the parameter adaptation algorithm is derived based
on the exponentially weighted least square method.

The adaptive model following control system is also constructed according to the proposed
observer scheme.

The proposed observer and controller are rather than simple structure and have a fast adaptive
algorithm, so it may be expected that the scheme is suitable to the practical application of control

system design.
The effectiveness of the algorithm and structure is illustrated by the computer simulation of a

30~12~3

third order system. The simulation results show that the convergence speed is proportinal to the

increasing of weighting factor alpha, and that the full order and reduced order observer have

similar convergence characteristics.

1. Introduction

The_ adaptive abserver is a model reference adaptive
scheme generating the inaccessible state variables of
the unknown plant with only input and output meas-
urement. And also the adaptive observer is essential
to the adaptive model following indirect control.

Since the discretization of the continuous algorithm
is not suitable to the digital computer implementation,
it is desirable to develop a simple and fast converg-
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ence adaptive observer for an adaptive control
system design.

A significant contributions to the design of the full
order adaptive observer using Lyapunov’s direct
method have been made by Carroll and Lindorff.
Liider, Kudva and Narendra have been reported on
an adaptive observer based on the nonminimal realiz-
ation of the unknown system®:®, Recently Kreisse-
Imeier has proposed the parameterized adaptive
observer. Nuyan and Carroll have proposed the
implicit observer‘®, Narendra and Valavani have
shown that the auxiliary signal is required for the
minimal order realization of an adaptiv: obssrver®,

On the other hand it is also proved that the implicit
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observer does nct necessary any auxiliary signals in
case of seperating the dynamics of the parameter
estimation and state variable filter’s dynamics'®. In
addition to these, Kudva and Narendra have proposed
the discrete adaptive observer using Lyapunov’s
direct method”. Andoh and Suzuki‘® have reported
the discrete adaptive observer which is based on
Popov’s hyperstability theorem. Suzuki, Nakamura
and Koga'® have proposed a discrete adaptive
observer which is the discretized form of the Kreis-
elmeier’s scheme®.

In case of adaptive control systems their control
scheme may be classified into two types such that
direct and indirect control®*® Recently several
schemes have been reported by some scholars ©~0#,
In this paper we propose a new scheme for the
discrete reduced order adaptive observer based on the
similar philosophy to Nuyan and Carroll*®. Since the
proposed scheme has fast convergence characteristics,
it will ke able to use for the design of an indirect
adaptive control system.

The problem description is given in section 2. In
section 3 we describe the plant as a bilinearform in
terms of artificial corresponding parameters and the
state variables of the state variable filters, and then
design the discrete reduced order adaptive observer.
The adaptation algorithm for estimation of artificial
corresponding parameters which are a one-to one
mapping into the actual unknown plant parameters
is also derived in section 4, and then the adaptive
model following controller is formulated in section 5.
Finally in section 6 we give some results of the
computer simulation of a third order system to

illustrate the effectiveness of the proposed scheme.
2. Problem Description

Consider the single input single output linear time

invariant discrete system described by

x, (k1) =Apzs (k) +-bpu (k) €Y

y(B)y=cTzs(k), 2:(0)&x,® '
where (%) is the nth-order state’ vector of the
plant, y,(%) is a mearsureable scalar . output of the
plant, «(k) is a scalar input of the plant and A,, &,
and ¢ are #X#n, nX1 and X1 matrices respectively.
Then we may assume, without loss - of generality,
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that plant (1) has the following observable canonical

form

A I,,,J B an
== —a, J‘ Qr=| @s2
‘0 Grn

1

bn 0

b,:{ b'pz ], c= 0

L b‘l’n 0

whgre the vectors as, b, and z,° are unknown and
I.iis an (z—1)st order unit matrix. The main idea
of designing discrete adaptive implicit observer is to
express the unknown output equation of nth-order
plant as in the form of y=f(p,~). The argument
pis a set of artificial corresponding, parameters
which is a one-to-one mapping into the actual unkn-
own plant parameters, and the argument‘ r is a set
of state variables of the state variable filters which
correspond to the unknown state variables of the
plant. If such a function can be chosen, the estimated
output (%) of the plant is given by

2B =rG k), rB). .

Since the estimated output error of the plant is
caused by the difference between p and p(k), it is
possible to find the estimated value of p. And it is
also possible that the estimated value £,(%k) of the
state vector of the plant can be obtained from the
linear combination of the states r,(k), 7»,(k) of the
state variable filters.

The observation process is well seperated from the
adaptation process and suitable adaptation - schemes
can be developed in a general fashion‘®.

With these adaptive algorithm and scheme of the
adaptive observer, we formulate an indirect adaptive
model following control system. Now we assume that
such a system is described by

2y (k1) =Ayzn (k) +buuu (k) @
(k) =cTxu (k) .
where yu(k), zy(k) and uyu(k) are the model output,
state vector and input respectively, and the coefficient
matrices of the model Ay, by and ¢ are _otisarvable
canonical from such -that

Au;[ —a-.gl""]. e W RT RLLLY. 2 L
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In order to get the adaptive model following
control we transform.the model output yn(#) into
the bilnear form of » and », and then the control
input «(#) shall be applied to the plant for adjusting
the plant parameters so that the plant’s output may
follow the model’s.

¢=(1 0---007

"3. The Reduced Order Discrete Adaptive
Observer

Since the plant (1)
observable system, its states can be estimated asym-

is a discrete time-invariant

ptotically by means of Luenburger’s reduced order
observer® such that
v(+D=Fv(k)+gy(e)+hulk)

2o (B)=y,(%) 6]
Zp(R)=v(R)+1loys(R)
where v(E)=_{v,v;"*+* Va-1)T, state vector of the

reduced order discrete adaptive observer,

Zy(E)=[Ln#ps--22,)7, the estimated value of
unmeasureable state vector of the plant,

g,h and 1, are coefficient vectors with compatible
dimension,

F is a asymptotically stable matrix whose eigenv-
alues are located in the unit circle and different from
those of A,,

.. A
r=|-r | d
i Fo

(81 by
8= {g.z i h-_—“ h_z 1
én-l Lh‘»-l

The basic principle of the adaptive observer is to
adjust g and h adaptively in real time -to cause lim
Ao

2p(Ry=xs (k).

'In formulating an adaptive observer, ' the unmears-
“urable state variables of the system are replaced by
the states of the state -variable filters. ' One of the
basic question is to minimi%e the order:: of the state
variable filters.

Taking the Z-transform of (1), we have

(2"+a"d(2)) Y, () =b,,d () U(2) +2d(2) ",

ERBEEE B30L F128% 19814F 124

where d(2)=[z""'z" % -21) €Y
In order to investigate the relationship between eq.
(4) and the state variables of the state variables
filters, we introduce Q(z) be an nth-order polynomial
such that
Q=) =z"1¢"d(2),
where g={q1g.-g.J7 and ¢;((=1,2, -+, 25 v ill be
chosen so that the roots of Q(z) lie within
the unit circle of z-plane.
(4) is now written as
(Q(2) —(g—ap)Td(2)) Yo(2)
=b,d (2) U(2)+2d(z) zs° ®)
Dividing by Q(2),

Vi) =(g—an™2EL ¥,(2)

Q=
rd(z) z.d(z)
+-b, 0 U@ +—575 06 ** ®

Whenever the output of an nth-order system is to
be estimated by (6), it requires two nth-order state
variable filters for the input and output. The essentia
property of the filters is that the linearly independent
signals are needed. This property can be mainiained
even if the order of Q(z) is reduced by one as
Luenburger’s reduced order observer does. Therefore
a measurable output and input signal can be treated
as one of the states of each state variable filter.

If we assume that Q(z) has a real root «ai, then

Q)=(z—ap M(=), )
where M(z) is a stable (#—1)st order polynomial
such that

M(z)=z""'—mTd(z) &
where

m=(mimymn_1J7,

d(2)=[2" %" %z 17
Plug (7) and (8) into (6), then

(2=a) Yoy =(g—an ™25 Yo(2)

+5," J‘f,;(z)) Uz)+= jiugg 4

Let a,=[(aasa]m,
5:= [b,bs---b.]r,
g=[(gags>-ga)",

B@LZOKE)=22 (zg

@

z""? d(z)
I (O ()

Using these notations (9) is written as

(824)
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r—a) Y()=(g:—as) Y, ()

F@—as— (g—ar)m) j‘fjé)) Yo () +bnU(2)

d(=)
Since the elements of (z) are linearly independent,

4 (Bo—mbsy) U)+8(=)z,° ao

" 1@ ((zz)) Ys(2) and J((/I((zz)j U(z) can be generated from

(n—1) st-order stable and controllable state variable

filters with characteristic polynomial M{z). Let
(M, 1;) and (M,,1,) are the controllable system
matrix pairs with the characteristic polynomical
M(z). Then (z—1) st-order controllable state variable
filters are given by

ri(e+D=Mr (&)+1, y(&)

P2 (-E D) =M,y (B) 1,0 (B an
where

M, M, : (#—1) X (»—1) matrix

1,,1,: (—1) dim. vector

There exist (z—1)st order nensingular transforma-

tion matrices T, T> if the filters are controllable.

The z-transformation of filters are
Ri()=GI=M) " LY, =T ¥,
az

S -1 TOa) — -1 C?(Z)
R, (2)=(:I-M) ' LUR)=T, M) U=

where
Ri(z)2=2(r(R), i=1,2
(12) is written as
(z—a) Y,(x)=(gi—am) Y,R)+p."T.R,(z)
Fou U+ 2." 2R () +@T(2) £ 13)
where
2={g—ar—(g1—an)m)
p2=5p—mb,1
Taking the inverse z-transform, (13) can be written
as
e+ =a; ys(B) +pTr (k) +07 (k) 2,° 14
where ‘
PT"_‘[(I)_QM Per1 bt Perg]
rT=(ypirTiutlrT)
If we choose 1, such that 1,=f in (3), the reduced
order observer can be constructed by using
g=¢—a,—(q:—8,) f=F1,
h=b,~by f=Fu s
And det (zI—-Fl=M(2).
Now we assume that the observer v(%) ean be cons-

-
il

tructed from the algebraic transformation of the
states » of the state variable filter and also we
assume that their operators will be given by H,(5,)
and H,($,), then the state variable of the observer
is written as
V(Z) =Hl(ﬁ1)R1(2)+Hz(ﬁz)Rz(Z) (16)
From (3) the observer states can be written by
V()=(I-F)gY,(2)+(zI-F) W U(z)
+z(zI—F) v, 17y
Eq. (16) is described by
V(z)=H,(zI-M))"1,Y(2)
+H,(zI—-M,)'1,U(2) (18)
In (18) we make v,=0 for compuational simplicity.
From (17) and (18)
GI-F)'g=GI-F)(T\) 5
=H (zI-M)1,
(2I—F) = (= I—F)*(Ty") 15,
=H,(zI-M,)"'1, 19
where
P:l: Tlrﬁl, .i:’z:TzTﬁz
Using matrix properties, H, and H, are written as

H=((T") 1, : - 1 (T3,

GYRI A PRI M,"-%1,]7Y
H=((T") 15, 1 - F3 (TN p,)

(1, M1, % -+ M,"-21,)71 20

In addition to these results, the discrete reduced order
adaptive observer can be formulated by the correct
identification of the parameter p. In next section we

prepose such an algorithm.

b e -~ - SSADAPTATION LAW

Fig. 1. Block diagram of reduced order adaptive
observer
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4, The Adaptation Algorithm

There are various methods in parameter identifica-
tion. In this paper, we use the exponentially weighted
least sguare method which has good convergence
characteristics.

If we denote $(%) as the estimate of the parameter
# at kth iteration, then from(14) the estimated plant
output is written as

T iD=y (D + PRI (D +eFiTtn, 2D
where

7=0,1,, &,

() Lw,.
The ouiput estimated error is

es (D=9 U+ —3,(G+D) 22)
We introduce the following criterion function to get

the algorithm for error minimization.
JE) =S8 e (f), 0<A<], f=1—A (23
i=0

Let v,=0 for computational simplicity. By taking the
gradient of J(k) with respect to $(£) and making
zero, J(%) will become minimum at each k. Therefore
the following equation can be derived
PE=[RTEWERRME I 'R (AW (RQH

=I"(B) RT ()W (R)Q(k) 2
where

RUD=(r(0) 1 #(1) i vovvveeveer § r(R)IT
QU= yp(1) yo(2)ereeees YD

gA* \

gt O |

W (k)= |

o s |

g )

*and TR =(RT(OWER RG] (24—
From thesz equations, we can derive the following
racursive eguations
BeAD=5) — LG+ (90 (k+1) —y, (k=-1)]
[ y= AU~ LG+DA R+ D) PR (25)
where

ACESIARUORACES)

1 rE -
[—B—-I—rT(k%—l)——l——r(k—H)]

Lemma: 7'(k) defined by I'(®)=(RT (W& R&)I™
is positive definite if the input sequence (k) is rich

TREGE #3048 H125 19814 121

and W (k) is positive definite.
Proof: We claim that I'(®#) is positive definite if
only the RT(®) W (k)R (%) is positive definite.
R(E) consists of the states of the state
variable filters suth that
REY=0(0) :r) i i r (DT
And the components of the (%) are given by

r(B)=[yo(k) r"(B) ulk) r T (R LD
and

yp(B)=cT{2I—A,) by u(k)

(k) =[zI-M]"'1, (k) (L2

ro(B)={2zI—M,) *Lu(k)
where z is the time shift operator such that zu(k)=
u(k+1). Using some matrix notations (L2) may be
transformed to the following egs.
(B =A," (2)CT (A2 '+ Ayzn 2+
st Ay b (B)
m(B=M"1(2)(Mz" 2+ M, 2"+
ot Mia-2)1 v (k) [(5:))
r(B)=M"(2) (M2 2+ M, =" 3+
o My -2) 1200 (R)
where
Ay(2)=2z"+c,Td (2)
A,=1
A=A A+ enl G=1,2,+,2—1)
M(z)=z""1+m"d (z)
M;=I
My=M;M;,_,+mI1(j=1,2, i=1,2,-,72—-2)
From (L3) we will get the following equation;

PB=M @4 [5EM, e

Ak U (L4)

If we define that the coefficient vector of the element
= ((=0,1,2,++,22—3) is given by Si, then we have
the following gquation;

0 T Achy ¢T Ay cTAprby 0 oo 0 °
0 0 Spngreeeeeese Speveerenaens S: S,
R™B)=) 1" 0 ceveerne Qreeeerrarennennnn 9
0 Myls Mul, My iy Oeveeeens 0
w(0) 2(Q)u@n) wuCn+1)-ulk) i
0 2 (0)eu(2n—1) crereerenrennns w(k=—1) |
X[ eeeeeenn errenes © rieesisessaseee l
0 0w  w(@ -pll—2n) |
(L5}
aSxU

(826)
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S is 2»X2n matrix and U is 2xx (5+1) matrix. If
the rank of the R(%) is 27 and the weighting matrix
W (k) is positive definite, then RT(E)W(R)R(E) is
definite.

Since the state variable filter and the plant are
controllable system, the rank of matrix S is 2.
Therefere the rank of matrix U must be 22 in order
to satisfy the fact that the rank of R(%) is 2x.

If the input sequence u(%) satisfy above condition,
we call it that the input (%) is rich. QED.

Theorem: The value ef I'(k) calculated by (24) is
equal to (RT(H)W(ER(k))* and then p(k) approa-
ches to p asymptotically for any initial conditions.
Proof:

If we let an initial value of I'(%) be given by [y,
I'(®) can be described by the following equation

r=[prr:+ 356 i (D7 ]

Now we assume that 0<<A<1 and each element of I,
are relatively large value, the effectiveness of I, can
be negligible as % approaches to infinite, Therefore
the value I'(%) will be expressed by (RY(B)W (k)R-
(B))-L If I'(E) expressed by (RT(BAW (B)R(E) ] and
positive definite, (%) approach to p asymptotically
according to the (24) for any initial conditions. Q.E.D.

5. Adaptive Model Following Control

In this section we describe about an indirect control
scheme for model following discrete adaptive control
(107 using the proposed discrete adaptive obszsrver
described in section 3.

At first we express the output error in terms of
bilinear form of p and », and then choose the control
input »#(%) so that e,(#) may approach to zero as
. p(k)—p. Finally we expect that the plant output
will follow the model’s one.

In order to apply the scheme of the prescribed
reduced order observer to a model following adaptive
control system' for simplicity, we choose a new
matrix Q whose. characteristic polynomial is given
by Q(z), where

AR
Q=[,—q§'6"'], 9=(g:q2g.J" .

Q(z)=det(zI-=Q).

— 709 —

From (1) and (2)
zp(k+D=Qz»(k) +(g—en) ys (&) +bwclk)
Zy(B+1D)=Qxy (k) + (g—aw) yu (B +byuy (k)
(26)
Output error is given by
e () =yu(k) —y,(k) @0
Taking Z-transform the output error equation is

written by
e, (Z) == (q_aM)T g((i))h YM (2)
+0r 5D Ve~ g-an 2 vy
_ d(2) z.d(z)
b7 G() U+ Ulz) °° )

Let Q(z) have one real root «, as previous section,
then
Q)=(z—~a) M(z)
As previous section, (28) can be rearranged
(z—aDe(z)=(—a) Yul2) —(g:—an) Y, (=)

SR GEPMIGLLLOS AO

— b U(2) — (bp—mbp)T 1714(@)) U (29

From (29) we choose the control input «(z) for the

model following discrete control as follows:

U =-51;<<z—al> Yu () — (qi—an) To()

—(Q‘—’a:p—(ql_&ﬁl)m)r ;E)\l((zz)) YP(Z)
— Grmb U () 30)

Taking the inverse Z-transform and combining with
16)
1
u() =g (yu (k+1) —ats yu ()

I 4
—(g—&n)ye(B) — 5" T (&)
— 5" Tor2 (B)) (31

In order to investigate the stability of the prescribed
adaptive model following control system we plug (30)
into (29), then

(z—aDe () =z (F (A —p)Tr(k))

The estimate value 5(%) approaches to p as k
increases because of the stable adaptation algorithm.
Therefore output error e;(z) approackes to zero .for
a, lies in unit circle of z-plane. Fig. 2 shows block
diagram of the proposed control system. One of the
feature of the controller has relatively simple structure
by using p(%) directly.

(827)
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Fig. 2. Block diagram of adaptive model following
contrel system

6. Simulation and DPiscussions

A third order plant with the following state equa-

tions was chosen for simulation. Fig 3 shows the

flow chart of the simulation. The plant is

-1 1 01 1
xp(k-‘rl)z( —0.31 0 1 lzx(® +[ 1 }u(k)
—-0.03 0 0~ 1
yp(k)=[1 0 0)z,(&)
And the model is .
( —0.08 1 0 (0.8
oa(BFD=| 0.104 0 1 zu(B-+|1.0uy(®
L —0.009%6 0 0 ‘1.2

y;;(k)=f.1 0 03zp (k)

The reference input is stair case wave form shown
in Fig. 4. In the adaptation algorithm the initial
value of I'(k) is diagonal form such that diag. (100
100 100 100 100 100] and A is given by 0.95.

In order to evaluate the effect of state variable
filter’s characteristic polvnomial, we take the follo-
wing cases for digital simulation by 1BM 360.

First; the poles of the filter are located at the
origin of z-plane, the deadbeat type observer.

Second; the poles of the filter and that of the mod:1
are located at the same place.

Third; the poles of the filter are located near the
The state variable filiers are
given by (11) such that

r(e+1D)=Mr (k) +1,y(k)
ro(k+ 1) =M, (k) +1,u (k)
Case 1. a;=0.2, a,==a;=0

inside of unit circle,

Qan

TRBEE $30% FI28% 19815 127

Set all init:‘tal‘vc\lues‘

-

p— T
CObiain referercs input

_Gam()

simulate.reference-medel
(et1), wp(x) |

Calewlate control 1&_?\}3
ulk) ]

Simulate plent
KA(k+1 )1 ¥alk)

Calculate r{k)

[Cz\lculate Hq (61 ), Hz(f/-’\i'

¥

Calculate esilmzte state

Xolk

!

N Calculate
1 {k+1), Bo(ks1)

Simulate S,V.F.
ri(k+1), rplk+1)

xp (k) x5 k1)
(k) Xg (k1)
ri{k)eri(k+1)
rz(k)« I‘z(kﬂ )

i

Calculate
(i), (k)

No. of
iteration =100?

| fes

Fig. 3. Flow chart of the simulation algorith:n

& [} 16 20 26 [f |36 40 46 fo - steps
-1 .

Fig. 4. i cput waveform

M=M=[g o], 1=}, L.=[}]

Case 2. o=0.2, a,=0.12, a;=—0.4

Mot [ 2 1), 1{0), 1.1

Case 3. ¢,=0.9, a,=-0.8, as==+0.7
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==, 0] 1=} 1.=(]]

In order to illustrate the corvergence characteristics
of the adaptzation algorithm we simulate the behavior

J(k)l

Poloa b 0.2, 012 wid 0.4

—o— 1
o ———w— i poles ut origin

—t—o— poles ut 0.9, =0.8 ant 0.7

% 100

steps

Fig. &. Behavior of rerformance criterion due to the
poles of state variable filter in adaptation

algorithm
"
f!.r!
2
4
z20
18 \
l -em~0m o Ipoles at ©.2, 0.12, -0.4
15 [ —&—% - Ipoles at origin
! ——L— poles ot 0.9, CEe:d07
|
o ]
1:& \
il
Rt ]
I
[\‘ |
g ‘ .
£\ !
AN
[
R
fiid

,\‘
RS

N
P

M

3.-‘ .-,;_.
10 15 20 45 B 40 45 50 55  steps

Fig. 6. State Error Distance Variation due to the
poles location of SVF in Adaptive Reduced
Order Observer with 1=0, 95

— 81 —

of the performance criterion J(&) according to three
cases in Fig. 5. The fact that the values of J(%) are
very low in initial 6 steps means that the number of
output are less than that of the coefficient to be ada-
pted.

In adaptive observer simulation, we investigate the
state error distance between the plant state and
estimated state to show the convergence characteristics.
The state error distance is difined by

n n 1/2
RN OEEN N
5=T

The state error distance of the reduced order ada-
ptive observer are shown in Fig. 6. In adaptive model
following control system simulation, the output of
the reference model and that of plant are shown in
Fig. 7. In addition to these simulation we observe
the effect of the weighting coefficient and compare
these results with the adaptive parameterized full
order observer®. Fig. 8 and 9 show the state error

distance variation according to 2 of the reduced and

Y Vn

same poles es r;fele'zce nodel s
¢ poles at origin " O lETeD)
poles at 0.9, -0.8 2nd €.7

i putput of reference model y,

65 .‘ 75 steps

i

-1

-2

-3

-4

Fig. 7. Plant and reference model output y, and ya
due to the pole location of state variable
filter in adaptive model following control
systern with 2=0.95

(829)
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b4
u n 'II
eopo
1o

X35 40 45 50 steps

Fig. 8. State error distance variation due to 2 in
adaptive reduced order observer

a~
7

——o——: A=0.9
[3 ——a——3 X=0.7

25 30 -35 40 45 steps

Fig. 9. State error distance variation due to 2 in
adaptive full order observer

full order observer of case 1 respectively.

Above simulation results are compared with state
errer distances of the adaptive full order observer,
which are shown in Fig. 10. From these simulation,
we may state that the poles of M(z) is important
in convergence characteristics. In adaptive observer,
the case 1 which has the poles of the state variable
filter at the origin shows the best convergence chara-
cteristics. The state error distance of the adaptive
observer converges to 5% of the initial distance in 40
steps approximately.

In adaptive model following control system, the
case 2, which has the poles of the state variable
filter at the pole locations of the reference model.
And in case 2, the error between reference model and
the plant reaches within 5% of initial error in 40
steps. And we can state that the convergence speed
and the peak error are increasad in accordance to the

(830)
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6
—o—o-- ¢ full ovder cbserver
--v--w--~: roduced order cbservir
0 S PRPPTTI
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Fig. 10, Comparison of the state error distance
variation between the reduced order observer
and the full order observer when 2 is varied

weighting factor 4. And also the convergence chara-
cteristics of the reduced order adaptive observer is
similar to that of the full order adaptive abserver.

7. Conclusion

In this paper we have presented the discrete version

of an adaptive reduced order observer without
auxiliary signals. The implicit observer accomplishes
the property through seperating the dynamics of the
parameter adaptation and that of the state variable

filters.
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Tre adaptation law is derived based on the expo-
nentially weighted least square method which has
good convergence characteristics in deterministic
system. And we derive the adaptive model following
control system which is a similar structure to the
reduced order adaptive observer.

The effectiveness of these proposed algorithm has
baen illustrated by computer simulation carried out
for a third order system.

From these results we can state that the reduced
order discrete adaptive implicit observer has simple
structure and has fast convergence characteristics.
Therefore it is desirable to apply this algorithm to
one of the practical design problems. And this scheme
can be expended into multi-input case.

And also the adaptive model {following control
algortithm can be applied to the practical control
system design due to its simple structure and fast
convergence characteristics. But there are some
problems to apply these algorithms to the stochastic
system whose input and output accompany with
random noise. The optimal choice of M(z) and the
biasing problem in adaptation algorithm are the future
problems. It would be possible to apply the other
adaptation algorithms.
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