• Title/Summary/Keyword: Dirichlet problem

Search Result 175, Processing Time 0.031 seconds

SOLVABILITY FOR SOME DIRICHLET PROBLEM WITH P-LAPACIAN

  • Kim, Yong-In
    • The Pure and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.257-268
    • /
    • 2010
  • We investigate the existence of the following Dirichlet boundary value problem $({\mid}u'\mid^{p-2}u')'\;+\;(p\;-\;1)[\alpha{\mid}u^+\mid^{p-2}u^+\;-\;\beta{\mid}u^-\mid^{p-2}u^-]$ = (p - 1)h(t), u(0) = u(T) = 0, where p > 1, $\alpha$ > 0, $\beta$ > 0 and ${\alpha}^{-\frac{1}{p}}\;+\;{\beta}^{-\frac{1}{p}}\;=\;2$, $T\;=\;{\pi}_p/{\alpha}^{\frac{1}{p}}$, ${\pi}_p\;=\; \frac{2{\pi}}{p\;sin(\pi/p)}$ and $h\;{\in}\;L^{\infty}$(0,T). The results of this paper generalize some early results obtained in [8] and [9]. Moreover, the method used in this paper is elementary and new.

ON THE EXISTENCE OF THE THIRD SOLUTION OF THE NONLINEAR BIHARMONIC EQUATION WITH DIRICHLET BOUNDARY CONDITION

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.1
    • /
    • pp.81-95
    • /
    • 2007
  • We are concerned with the multiplicity of solutions of the nonlinear biharmonic equation with Dirichlet boundary condition, ${\Delta}^2u+c{\Delta}u=g(u)$, in ${\Omega}$, where $c{\in}R$ and ${\Delta}^2$ denotes the biharmonic operator. We show that there exists at least three solutions of the above problem under the suitable condition of g(u).

  • PDF

DIRICHLET EIGENVALUE PROBLEMS UNDER MUSIELAK-ORLICZ GROWTH

  • Benyaiche, Allami;Khlifi, Ismail
    • Journal of the Korean Mathematical Society
    • /
    • v.59 no.6
    • /
    • pp.1139-1151
    • /
    • 2022
  • This paper studies the eigenvalues of the G(·)-Laplacian Dirichlet problem $$\{-div\;\(\frac{g(x,\;{\mid}{\nabla}u{\mid})}{{\mid}{\nabla}u{\mid}}{\nabla}u\)={\lambda}\;\(\frac{g(x,{\mid}u{\mid})}{{\mid}u{\mid}}u\)\;in\;{\Omega}, \\u\;=\;0\;on\;{\partial}{\Omega},$$ where Ω is a bounded domain in ℝN and g is the density of a generalized Φ-function G(·). Using the Lusternik-Schnirelmann principle, we show the existence of a nondecreasing sequence of nonnegative eigenvalues.

NONTRIVIAL PERIODIC SOLUTION FOR THE SUPERQUADRATIC PARABOLIC PROBLEM

  • Jung, Tacksun;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.17 no.1
    • /
    • pp.53-66
    • /
    • 2009
  • We show the existence of a nontrivial periodic solution for the superquadratic parabolic equation with Dirichlet boundary condition and periodic condition with a superquadratic nonlinear term at infinity which have continuous derivatives. We use the critical point theory on the real Hilbert space $L_2({\Omega}{\times}(0 2{\pi}))$. We also use the variational linking theorem which is a generalization of the mountain pass theorem.

  • PDF

A MIXED METHOD OF SUBSPACE ITERATION FOR DIRICHLET EIGENVALUE PROBLEMS

  • Lee, Gyou-Bong;Ha, Sung-Nam;Hong, Bum-Il
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.243-248
    • /
    • 1997
  • A full multigrid scheme was used in computing some eigenvalues of the Laplace eigenvalues problem with the Dirichlet bound-ary condition. We get a system of algebraic equations with an aid of finite difference method and apply subspace iteration method to the system to compute first some eigenvalues. The result shows that this is very effective in calculating some eigenvalues of this problem.

A Bayesian Analysis of the Multinomial Randomized Response Model Using Dirichlet Prior Distribution

  • Kim, Jong-Min;Heo, Tae-Young
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2005.05a
    • /
    • pp.239-244
    • /
    • 2005
  • In this paper, we examine the problem of estimating the sensitive characteristics and behaviors in a multinomial randomized response (RR) model. We analyze this problem through a Bayesian perspective and develop a Bayesian multinomial RR model in survey study. The Bayesian inference of multinomial RR model is a new approach to RR models.

  • PDF

DIRICHLET BOUNDARY VALUE PROBLEM FOR A CLASS OF THE ELLIPTIC SYSTEM

  • Jung, Tacksun;Choi, Q-Heung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.27 no.4
    • /
    • pp.707-720
    • /
    • 2014
  • We get a theorem which shows the existence of at least three solutions for some elliptic system with Dirichlet boundary condition. We obtain this result by using the finite dimensional reduction method which reduces the infinite dimensional problem to the finite dimensional one. We also use the critical point theory on the reduced finite dimensioal subspace.

ON REGULARITY OF SOLUTIONS OF THE DIRICHLET PROBLEM FOR THE POLYHARMONIC OPERATOR

  • Kozlov, Vladimir
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.5
    • /
    • pp.871-884
    • /
    • 2000
  • Polyharmonic operator with Dirichlet boundary condition is considered in a n-dimensional cone. The regularity properties of weak solutions are studied. In particular, it is proved the Holder contionuity of solutions near the vertex of the cone for dimensions n=2m+3,2m+4, where 2m is the order of the polyharmonic operator.

  • PDF

MULTIPLICITY RESULTS FOR SOME FOURTH ORDER ELLIPTIC EQUATIONS

  • Jin, Yinghua;Choi, Q-Heung
    • Korean Journal of Mathematics
    • /
    • v.18 no.4
    • /
    • pp.489-496
    • /
    • 2010
  • In this paper we consider the Dirichlet problem for an fourth order elliptic equation on a open set in $R^N$. By using variational methods we obtain the multiplicity of nontrivial weak solutions for the fourth order elliptic equation.