SOLVABILITY FOR SOME DIRICHLET PROBLEM WITH P-LAPACIAN

Yong-In Kim

Abstract. We investigate the existence of the following Dirichlet boundary value problem

$$
\begin{aligned}
& \left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+(p-1)\left[\alpha\left|u^{+}\right|^{p-2} u^{+}-\beta\left|u^{-}\right|^{p-2} u^{-}\right]=(p-1) h(t), \\
& u(0)=u(T)=0,
\end{aligned}
$$

where $p>1, \alpha>0, \beta>0$ and $\alpha^{-\frac{1}{p}}+\beta^{-\frac{1}{p}}=2, T=\pi_{p} / \alpha^{\frac{1}{p}}, \pi_{p}=\frac{2 \pi}{p \sin (\pi / p)}$ and $h \in L^{\infty}(0, T)$. The results of this paper generalize some early results obtained in [8] and [9]. Moreover, the method used in this paper is elementary and new.

1. Introduction

Consider the solvability of the following Dirichlet boundary value problem

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+(p-1)\left[\alpha \phi_{p}\left(u^{+}\right)-\beta \phi_{p}\left(u^{-}\right)\right]=(p-1) h(t), \quad t \in(0, T) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
u(0)=u(T)=0 \tag{2}
\end{equation*}
$$

where $p>1, \phi_{p}(u)=|u|^{p-2} u, u^{ \pm}=\max \{ \pm u, 0\}, h \in L^{\infty}(0, T)$ and $\alpha>0, \beta>0$ with $\alpha^{-\frac{1}{p}}+\beta^{-\frac{1}{p}}=2, T=\pi_{p} / \alpha^{\frac{1}{p}}$ and $\pi_{p}=\frac{2 \pi}{p \sin (\pi / p)}$.

By a solution of problem (1)-(2) we mean a real-valued function $u \in C^{1}[0, T]$ satisfying (1) and (2) such that $\phi_{p}\left(u^{\prime}\right)$ is absolutely continuous and (1) holds almost everywhere in $(0, T)$. Note that if $p=2$ and $\alpha=\beta=1$, then $T=\pi_{p}=\pi$ and (1)-(2) reduces to the linear problem

$$
u^{\prime \prime}+u=h(t), \quad u(0)=u(\pi)=0
$$

[^0]The solvability of this problem is fully described, for example, by the classical linear Fredholm alternative, that is, this problem is solvable if and only if h satisfies

$$
\int_{0}^{\pi} h(t) \sin t d t=0 .
$$

In this case, the solution set is a continuum constituted by a one dimensional linear manifold. But for $p \neq 2$, the situation is quite different. Del Pino et al [8] proved that for $p \neq 2$, the condition

$$
\begin{equation*}
\int_{0}^{\pi_{p}} h(t) \sin _{p} t d t=0 \tag{3}
\end{equation*}
$$

where $u=\sin _{p} t$ is the unique solution of the following initial value problem

$$
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+(p-1) \phi_{p}(u)=0, \quad u(0)=0, u^{\prime}(0)=1,
$$

is sufficient for the solvability of the following boundary value problem

$$
\begin{equation*}
\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+(p-1) \phi_{p}(u)=(p-1) h(t), \quad u(0)=u\left(\pi_{p}\right)=0, \tag{4}
\end{equation*}
$$

provided that $h \in C^{1}\left[0, \pi_{p}\right]$ and $h \not \equiv 0$. They also showed that for $p \neq 2$, the solution set of the problem (4) is bounded on $C^{1}\left[0, \pi_{p}\right]$ if (3) holds. Later, Drabek et al [9] generalized the results of [8] and replaced the condition $h \in C^{1}\left[0, \pi_{p}\right]$ by a weaker one $h \in L^{\infty}\left(0, \pi_{p}\right)$. For more results on this topic, see, for example, [1-7,10,11] and the references therein.

In this paper, the above existence result is generalized to (1)-(2) and the method used in this paper is elementary and different from those used in [8] and [9]. Moreover, we will give a sufficient condition for the existence of solutions for the following more general class of nonhomogeneous nonlinear equations:

$$
\left.\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{(p-1) q}{p}\left[\alpha \phi_{q}\left(u^{+}\right)-\beta \phi_{q}\left(u^{-}\right)\right]=(p-1) h(t), \quad u(0)=u(T)=0,
$$

where $q \geq p>1, h \in L^{\infty}(0, T), \alpha^{-\frac{1}{p}}+\beta^{-\frac{1}{p}}=2 \quad$ and $\quad T=\pi_{p} / \alpha^{\frac{1}{p}}$.

2. Lemmas

If $h \in L^{\infty}(0, T)$, then in a similar way as in the proof of [8], one can show that a globally defined solution of (1) satisfying the initial condition

$$
\begin{equation*}
u(0)=0, \quad u^{\prime}(0)=\alpha \tag{5}
\end{equation*}
$$

exists for any $\alpha \in \mathbb{R}$. Therefore throughout this paper we assume the existence of a globally defined solution of (1) with the initial condition (5).

Let $u=\sin _{p} t$ be the unique solution of the following initial value problem:

$$
\left.\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+(p-1) \phi_{p}(u)=0, \quad u(0)=0, u^{\prime}(0)=1
$$

Then by [2] and [8], for $t \in\left[0, \pi_{p} / 2\right]$, it can be described implicitly by the formula

$$
t=\int_{0}^{\sin _{p} t} \frac{d s}{\left(1-s^{p}\right)^{\frac{1}{p}}}
$$

and $\sin _{p} t=\sin _{p}\left(\pi_{p}-t\right)$ for $t \in\left[\frac{\pi_{p}}{2}, \pi_{p}\right], \sin _{p} t=-\sin _{p}\left(2 \pi_{p}-t\right)$ for $t \in\left[\pi_{p}, 2 \pi_{p}\right]$ and $\sin _{p}\left(2 k \pi_{p}+t\right)=\sin _{p} t \forall k \in Z, t \in\left[0,2 \pi_{p}\right]$, i.e., $\sin _{p} t \in C^{2}$ is $2 \pi_{p}$-periodic. Moreover, by defining $\cos _{p} t=\sin _{p}^{\prime} t$, it follows from the above formula that $\sin _{p}^{p} t+\cos _{p}^{p} t=1$ for $t \in\left[0, \pi_{p} / 2\right]$.

Let $S(t)$ be the solution of the following homogeneous initial value problem

$$
\begin{equation*}
\left.\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+(p-1)\left[\alpha \phi_{p}\left(u^{+}\right)-\beta \phi_{p}\left(u^{-}\right)\right]=0, \quad u(0)=0, u^{\prime}(0)=1 \tag{6}
\end{equation*}
$$

Then it is well-known that $S(t)$ is $2 \pi_{p}$-periodic and can be expressed explicitly as

$$
S(t)= \begin{cases}\alpha^{-\frac{1}{p}} \sin _{p} \alpha^{\frac{1}{p}} t, & t \in[0, T] \\ -\beta^{-\frac{1}{p}} \sin _{p} \beta^{\frac{1}{p}}(t-T), & t \in\left[T, 2 \pi_{p}\right]\end{cases}
$$

Moreover, by using (6), it is also easy to verify that $S(t)$ satisfies the following identity:

$$
\begin{equation*}
\left|S^{\prime}(t)\right|^{p}+\alpha\left(S^{+}(t)\right)^{p}+\beta\left(S^{-}(t)\right)^{p} \equiv 1, \quad t \in \mathbb{R} \tag{7}
\end{equation*}
$$

Under the generalized polar coordinates transformation

$$
\begin{equation*}
T: \quad u=\rho^{\frac{1}{p-1}} S(\theta), \quad u^{\prime}=\rho^{\frac{1}{p-1}} S^{\prime}(\theta), \quad \rho>0, \quad \theta \in \mathbb{R} \tag{8}
\end{equation*}
$$

and by using (7), it is not difficult to show that equation (1) is transformed into the following first order system:

$$
\begin{align*}
\frac{d \rho}{d t} & =(p-1) S^{\prime}(\theta) h(t) \\
\frac{d \theta}{d t} & =1-\rho^{-1} S(\theta) h(t) \tag{9}
\end{align*}
$$

If we consider the periodicity of $S(t)$, and by $u=\rho^{\frac{1}{p-1}} S(\theta)$, with $\rho>0$, we can assume without loss of generality that $u(0)=0$ implies that $\theta(0)=0$ or $\theta(0)=T$, which, by (8), is equivalent to $u^{\prime}(0)>0$ or $u^{\prime}(0)<0$ respectively. For simplicity, we discuss the first case only, that is $\theta(0)=0$. Now, the condition $u(T)=0$ is equivalent to $\theta(T)=m T$ for some $m \in \mathbb{Z}$.

Lemma 1. Let $(\rho(t), \theta(t))$ be the solution of (9) satisfying the initial value condition $(\rho(0), \theta(0))=\left(\rho_{0},{ }_{0}\right)$. Suppose $h \in L^{\infty}(0, T)$, then

$$
\begin{equation*}
\theta(T)=T+\rho_{0}^{-1} I_{h}+O\left(\rho_{0}^{-2}\right) \tag{10}
\end{equation*}
$$

as $\rho_{0} \rightarrow+\infty$, where $\rho_{0}=\rho(0)$ and $O\left(\rho_{0}^{-2}\right)$ is uniformly with respect to all $h \in$ $L^{\infty}(0, T)$ with $\|h\| \leq C$ for any fixed constant $C>0$ and

$$
I_{h}=-\int_{0}^{T} S(t) h(t) d t
$$

Proof. Since h is bounded, we obtain from the first equation of (9) that for $t \in[0, T]$,

$$
\rho(t)=\rho_{0}+(p-1) \int_{0}^{t} S^{\prime}(\theta(\tau)) h(\tau) d \tau=\rho_{0}+O(1)
$$

which implies that for $\rho_{0} \gg 1, \rho(t) \gg 1$ for all $t \in[0, T]$. Introduce a new positive variable $r=\rho^{-1}$, then $\rho \gg 1$ is equivalent to $r \ll 1$ and for $r(0)=r_{0} \ll 1$, one has $r(t) \ll 1$ for all $t \in[0, T]$. Under this variable transformation, system (9) is changed into the following form:

$$
\begin{align*}
& \frac{d r}{d t}=-(p-1) r^{2} S^{\prime}(\theta) h(t) \tag{11}\\
& \frac{d \theta}{d t}=1-r S(\theta) h(t)
\end{align*}
$$

Since $\theta(0)=0$, for $t \in[0, T]$, we get from above equations $\left(r_{0} \ll 1\right)$

$$
\begin{align*}
& r(t)=r_{0}+O\left(r_{0}^{2}\right) \\
& \theta(t)=t+O\left(r_{0}\right) \tag{12}
\end{align*}
$$

Substituting (12) into (11) and integrating from 0 to t, we obtain

$$
\begin{align*}
& r(t)=r_{0}-(p-1) r_{0}^{2} \int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau+O\left(r_{0}^{3}\right), \\
& \theta(t)=t-r_{0} \int_{0}^{t} S(\tau) h(\tau) d \tau+O\left(r_{0}^{2}\right) \tag{13}
\end{align*}
$$

Let $t=T$, we get from the second equation of (13) that

$$
\theta(T)=T+r_{0} I_{h}+O\left(r_{0}^{2}\right)
$$

which is equivalent to (10).
Lemma 2. If $I_{h}=0$, then for $\rho_{0} \gg 1$, we have the following approximation

$$
\begin{equation*}
\theta(T)=T+\rho_{0}^{-2} J_{h}+O\left(\rho_{0}^{-3}\right), \tag{14}
\end{equation*}
$$

where

$$
J_{h}=-\frac{(p-2)}{2}\left[\int_{0}^{\frac{T}{2}} \frac{\left.\left(\int_{t}^{\frac{T}{2}} S^{\prime}(\tau) h(\tau)\right) d \tau\right)^{2}}{\left|S^{\prime}(t)\right|^{p}} d t+\int_{0}^{\frac{T}{2}} \frac{\left(\int_{t}^{\frac{T}{2}} S^{\prime}(T-\tau) h(T-\tau) d \tau\right)^{2}}{\left|S^{\prime}(T-t)\right|^{p}} d t\right]
$$

Proof. Substituting (13) into (11) and integrating the second equation over $[0, T]$, we obtain

$$
\theta(T)=T+r_{0} I_{h}+r_{0}^{2} J_{h}+O\left(r_{0}^{3}\right)
$$

which is equivalent to (14), where

$$
I_{h}=-\int_{0}^{T} S(t) h(t) d t
$$

and
$J_{h}=(p-1) \int_{0}^{T} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t+\int_{0}^{T} S^{\prime}(t) h(t)\left(\int_{0}^{t} S(\tau) h(\tau) d \tau\right) d t$.
By using $I_{h}=0$ and integration by parts, we obtain

$$
J_{h}=(p-2) \int_{0}^{T} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t
$$

Denote $a=\frac{T}{2}$ and set

$$
\begin{aligned}
& L=\int_{0}^{T} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t \\
& =\int_{0}^{a} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t+\int_{a}^{T} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t \\
& =: L_{1}+L_{2}
\end{aligned}
$$

Then $J_{h}=(p-2) L$, where $L=L_{1}+L_{2}$ with

$$
\begin{aligned}
L_{1} & =\int_{0}^{a} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t \\
& =\int_{0}^{a}\left(\int_{t}^{a} S(\tau) h(\tau) d \tau\right) S^{\prime}(t) h(t) d t \\
L_{2} & =\int_{a}^{T} S(t) h(t)\left(\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau\right) d t
\end{aligned}
$$

Set $U(t)=\int_{t}^{a} S^{\prime}(\tau) h(\tau) d \tau, V(t)=\int_{t}^{a} S(\tau) h(\tau) d \tau$, then

$$
\begin{aligned}
L_{1} & =-\int_{0}^{a} U^{\prime}(t) V(t) d t \\
& =U(0) V(0)+\int_{0}^{a} U(t) V^{\prime}(t) d t \\
& =U(0) V(0)+\int_{0}^{a} \frac{U(t) U^{\prime}(t) S(t) d t}{S^{\prime}(t)} \\
& =U(0) V(0)+\left.\frac{1}{2} \frac{U^{2}(t) S(t)}{S^{\prime}(t)}\right|_{0} ^{a}-\frac{1}{2} \int_{0}^{a} U^{2}(t)\left(1-\frac{S(t) S^{\prime \prime}(t)}{\left(S^{\prime}(t)\right)^{2}}\right) d t
\end{aligned}
$$

Claim 1. $\lim _{t \rightarrow a} \frac{U^{2}(t) S(t)}{S^{\prime}(t)}=0$.

In fact, by the definition of $U(t), S(t)$ and by using L' Hospital's rule, we get

$$
\begin{aligned}
& \lim _{t \rightarrow a} \frac{U^{2}(t) S(t)}{S^{\prime}(t)} \\
& =\lim _{t \rightarrow a} \frac{U^{2}(t)}{S^{\prime}(t)} \lim _{t \rightarrow a} S(t)=\alpha^{-\frac{1}{p}} \lim _{t \rightarrow a} \frac{U^{2}(t)}{S^{\prime}(t)} \\
& =\alpha^{-\frac{1}{p}} \lim _{t \rightarrow a} \frac{2 U(t) U^{\prime}(t)}{S^{\prime \prime}(t)}=\alpha^{-\frac{1}{p}} \lim _{t \rightarrow a} \frac{-2 U(t) \mid S^{\prime}(t) p^{p-2} U^{\prime}(t)}{\alpha|S(t)|^{p-2} S(t)}=0 .
\end{aligned}
$$

Claim 2. $1-\frac{S(t) S^{\prime \prime}(t)}{\left(S^{\prime}(t)\right)^{2}}=\frac{1}{\left|S^{\prime}(t)\right|^{p}}, t \in(0, T)$.
In fact, since $S(t)>0$ on $(0, T)$, we get from (6) and (7),

$$
\left|S^{\prime}(t)\right|^{p-2} S^{\prime \prime}(t)=-\alpha|S(t)|^{p-2} S(t), \quad \text { and } \quad\left|S^{\prime}(t)\right|^{p}+\alpha(S(t))^{p} \equiv 1
$$

From above equations, we obtain

$$
1-\frac{S S^{\prime \prime}}{\left(S^{\prime}\right)^{2}}=\frac{\left(S^{\prime}\right)^{2}+\alpha|S|^{p} /\left|S^{\prime}\right|^{p-2}}{\left(S^{\prime}\right)^{2}}=\frac{\left|S^{\prime}\right|^{p}+\alpha|S|^{p}}{\left|S^{\prime}\right|^{p}}=\frac{1}{\left|S^{\prime}\right|^{p}}
$$

By using Claim 1 and Claim 2, we get

$$
L_{1}=U(0) V(0)-\frac{1}{2} \int_{0}^{a} \frac{U^{2}(t)}{|S(t)|^{p}} d t=U(0) V(0)-\frac{1}{2} \int_{0}^{a} \frac{\left(\int_{t}^{a} S^{\prime}(\tau) h(\tau) d \tau\right)^{2}}{\left|S^{\prime}(t)\right|^{p}} d t
$$

Now we calculate L_{2} :
Let $F(t)=\int_{0}^{t} S^{\prime}(\tau) h(\tau) d \tau, G(t)=\int_{0}^{t} S(\tau) h(\tau) d \tau$, then $G(T)=I_{h}=0$ and

$$
\begin{aligned}
L_{2} & =\int_{a}^{T} G^{\prime}(t) F(t) d t=-G(a) F(a)-\int_{a}^{T} F^{\prime}(t) G(t) d t \\
& =-G(a) F(a)-\int_{a}^{T} S^{\prime}(t) h(t)\left(\int_{0}^{t} S(\tau) h(\tau) d \tau\right) d t
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{a}^{T} S^{\prime}(t) h(t)\left(\int_{0}^{t} S(\tau) h(\tau) d \tau\right) d t \\
& \stackrel{t}{ }=\stackrel{T-x}{=} \int_{0}^{a} S^{\prime}(T-x) h(T-x)\left(\int_{0}^{T-x} S(\tau) h(\tau) d \tau\right) d x \\
& \quad \tau=\stackrel{T-y}{=} \int_{0}^{a} S^{\prime}(T-x) h(T-x)\left(\int_{x}^{T} S(T-y) h(T-y) d y\right) d x
\end{aligned}
$$

and $\int_{0}^{T} S(T-y) h(T-y) d y=\int_{0}^{T} S(t) h(t) d t=0$, we get

$$
\int_{x}^{T} S(T-y) h(T-y) d y=-\int_{0}^{x} S(T-y) h(T-y) d y
$$

This implies that

$$
\begin{aligned}
& \int_{a}^{T} S^{\prime}(t) h(t)\left(\int_{0}^{t} S(\tau) h(\tau) d \tau\right) d t \\
& =\quad \int_{0}^{a} S^{\prime}(T-x) h(T-x)\left(\int_{0}^{x} S(T-y) h(T-y) d y\right) d x
\end{aligned}
$$

Similar to the calculation of L_{1}, we obtain

$$
L_{2}=-G(a) F(a)-\frac{1}{2} \int_{0}^{a} \frac{\left(\int_{t}^{a} S^{\prime}(T-\tau) h(T-\tau) d \tau\right)^{2}}{\left|S^{\prime}(T-t)\right|^{p}} d t
$$

It is evident that

$$
F(a)=U(0), G(a)=V(0) .
$$

Now it follows from the expressions of L_{1} and L_{2} that

$$
L=L_{1}+L_{2}=-\frac{1}{2}\left[\int_{0}^{a} \frac{\left(\int_{t}^{a} S^{\prime}(\tau) h(\tau) d \tau\right)^{2}}{\left|S^{\prime}(t)\right|^{p}} d t+\int_{0}^{a} \frac{\left(\int_{t}^{a} S^{\prime}(T-\tau) h(T-\tau) d \tau\right)^{2}}{\left|S^{\prime}(T-t)\right|^{p}} d t\right] .
$$

Remark 1. Let $\alpha=\beta=1$, then $S(t)=\sin _{p} t, S^{\prime}(t)=\sin _{p}^{\prime} t=\cos _{p} t, T=\pi_{p}, a=$ $\frac{\pi_{p}}{2}$, Lemma 2 reduces the

$$
J_{h}=-\frac{(p-2)}{2}\left[\int_{0}^{\frac{\pi_{p}}{2}} \frac{\left(\int_{t}^{\frac{\pi_{p}}{2}} h(\tau) \cos _{p} \tau d \tau\right)^{2}+\left(\int_{t}^{\frac{\pi_{p}}{2}} h\left(\pi_{p}-\tau\right) \cos _{p} \tau d \tau\right)^{2}}{\cos _{p}^{p} t} d t\right]
$$

which differs only by a constant from the one defined in [8]. Besides, it should point out that the expression of J_{h} in [8] contains a typing error: π_{p} should be $\pi_{p} / 2$ in the upper limit of the second integral.

3. Main Results

In this section, by using a similar method used in [8] and [9], we give and prove an existence result of (1)-(2).

Let $X=C_{0}^{1}[0, T]=\left\{u \in C^{1}[0, T]: u(0)=u(T)=0\right\}$ and $R^{+}=[0,+\infty)$. For $u \in X, h \in L^{\infty}(0, T)$ and $\lambda \in R^{+}$, define an operator $G_{\lambda, h}: X \rightarrow X$ by $G_{\lambda, h}(v)=u$ if and only

$$
\begin{align*}
& \left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}=\lambda\left[h\left(\lambda^{\frac{1}{p}} t\right)-\alpha \phi_{p}\left(v^{+}\right)+\beta \phi_{p}\left(v^{-}\right)\right], \tag{15}\\
& u(0)=u(T)=0 .
\end{align*}
$$

Standard arguments based on the Arzela-Ascoli theorem imply that $G_{\lambda, h}$ is a well-defined operator which is compact from X into X^{*}. Moreover, $G_{\lambda, h}$ depends continuously on the perturbations of h and λ.
Lemma 3. Let $\operatorname{deg}\left[I-G_{\lambda, h} ; B_{R}(0), 0\right]$ be the Leray-Schauder degree of $I-G_{\lambda, h}$ with respect to $B_{R}(0)$ and 0 , where $R>0$ and $B_{R}(0)=\{u \in X ;\|u\|<R\}, I$ is the identity operator. Then for small $\varepsilon>0$ and any $R>0$,

$$
\begin{align*}
\operatorname{deg}\left[I-G_{1-\varepsilon, 0} ; B_{R}(0), 0\right] & =1, \tag{16}\\
\operatorname{deg}\left[I-G_{1+\varepsilon, 0} ; B_{R}(0), 0\right] & =-1 .
\end{align*}
$$

Proof. The result of Lemma 3 is a direct consequence of the results of [8] and the invariance of the Leray-Schauder degree under homotopy since α, β lie in the curve $\alpha^{-\frac{1}{p}}+\beta^{-\frac{1}{p}}=2$ which passes the point $\lambda_{1}=(p-1)$.
Theorem 1. Assume $h \in L^{\infty}(0, T)$ and $h \not \equiv 0, I_{h}=\int_{0}^{T} S(t) h(t) d t=0$. Then the boundary value problem (1) - (2) has at least one solution. Moreover, if $p \neq 2$, then the set of all possible solutions is bounded in $C^{1}[0, T]$.

Proof. By using the homogeneity and the boundary condition in (15), we see that for fixed $h \in L^{\infty}(0, T)$, we can take $R>0$ so large that (16) extend to

$$
\begin{align*}
\operatorname{deg}\left[I-G_{1-\varepsilon, h} ; B_{R}(0), 0\right] & =1 \tag{17}\\
\operatorname{deg}\left[I-G_{1+\varepsilon, h} ; B_{R}(0), 0\right] & =-1
\end{align*}
$$

First, we consider the case $1<p<2$, then by Lemma $2, J_{h}>0$ and for $t \geq T$ we extend h to $[0,2 T]$ as a L^{∞} function.

We claim that there exists a constant $R>0$ such that for any $\lambda \in[1,1+\varepsilon]$ the boundary value problem

$$
\begin{align*}
& \left.\left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+(p-1) \lambda\left[\alpha \phi_{p}\left(u^{+}\right)-\beta \phi_{p}\left(u^{-}\right)\right]=(p-1) \lambda h\left(\lambda^{1 / p} t\right)\right] \tag{18}\\
& u(0)=u(T)=0
\end{align*}
$$

has no solution with $\|u\|_{C^{1}[0, T]} \geq R$.
Suppose on the contrary that there exist sequence $\left\{u_{n}\right\}_{n=1}^{\infty} \subset C_{0}^{1}[0, T],\left\{\lambda_{n}\right\}_{n=1}^{\infty} \subset$ $[1,1+\varepsilon]$, such that $\lambda_{n} \rightarrow \bar{\lambda} \in[1,1+\varepsilon]$, and $\left\|u_{n}\right\|_{C^{1}[0, T]} \rightarrow \infty$ and u_{n}, λ_{n} satisfy (18). From (8), we know that $\rho_{n}(0) \rightarrow+\infty$. In this case, $v_{n}(t):=u_{n}\left(\lambda^{\frac{-1}{p}} t\right)$ solves the equation

$$
\left(\phi_{p}\left(v_{n}^{\prime}\right)\right)^{\prime}+(p-1)\left[\alpha \phi_{p}\left(v_{n}^{+}\right)-\beta \varphi_{p}\left(v_{n}^{-}\right)\right]=(p-1) h(t), v_{n}(0)=0
$$

with $\rho_{n}(0) \rightarrow+\infty$ and $u_{n}(T)=v_{n}\left(T \lambda_{n}^{\frac{1}{p}}\right)=0$. But Lemma 2 and $I_{h}=0$ imply $\theta_{n}(T)>T$ for n large enough. This contradicts the fact $u_{n}(T)=v_{n}\left(T \lambda_{n}^{\frac{1}{p}}\right)=0$ because $1 \leq \lambda_{n} \leq 1+\varepsilon$ for any $n \in \mathbb{N}$. Thus the claim is verified.

For this claim we see that for $\varepsilon>0$ small the homotopy $\bar{H}: X \times[1,1+\varepsilon] \rightarrow X$ defined by $\bar{H}(u, \lambda)=u-G_{\lambda, h_{\lambda}}(u)$, where $h_{\lambda}=h\left(\lambda^{\frac{1}{p}} t\right)$, satisfies $\bar{H}(u, \lambda) \neq 0$ for all $\lambda \in[1,1+\varepsilon]$ and $\|u\|_{C^{1}[0, T]} \geq R$. Thus, from the homotopy invariance property of the Leray-Schauder degree, we obtain by (17)

$$
\operatorname{deg}\left[I-G_{1, h} ; B_{R}(0), 0\right]=\operatorname{deg}\left[I-G_{1+\varepsilon, h_{1+\varepsilon}} ; B_{R}(0), 0\right]=-1
$$

This proves that for given h satisfying $I_{h}=0$, the boundary value problem (1)-(2) has at least one solution. Moreover, it follows from our discussions that all possible
solutions of (1)-(2) are bounded in the $C^{1}[0, T]$ norm. The case $p>2$ can be proved similarly.
Theorem 2. Define a functional $E: W_{0}^{1, p}(0, T) \rightarrow R$ given by

$$
E(u)=\frac{\int_{0}^{T}\left|u^{\prime}\right|^{p}}{p}-\frac{\left[\alpha \int_{0}^{T}\left|u^{+}\right|^{p}+\beta \int_{0}^{T}\left|u^{-}\right|^{p}\right]}{p}+\int_{0}^{T} h u
$$

where u is a solution of $(1)-(2), \alpha>0, \beta>0, \alpha^{-\frac{1}{p}}+\beta^{-\frac{1}{p}}=2$, and $T=\pi_{p} / \alpha^{\frac{1}{p}}$.
Assume that $h \in L^{\infty}(0, T)$, and $I_{h}=0, h(t) \not \equiv 0$.
(i) for $1<p<2$, the functional E is unbounded from below. The set of its critical points is nonempty and bounded.
(ii) for $p>2$, the functional E is bounded from below and has a global minimizer. The set of its critical points is bounded.

The proof of Theorem 2 is similar to the proof of Theorem 1.2 in [8], so we omit it.

4. More General Nonhomogeneous Problems

In this section, we deal with the existence of solutions to the following nonhomogeneous boundary value problem:

$$
\begin{align*}
& \left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{(p-1) q}{p}\left[\alpha \phi_{q}\left(u^{+}\right)-\beta \phi_{q}\left(u^{-}\right)\right]=(p-1) h(t), \tag{19}\\
& u(0)=u(T)=0,
\end{align*}
$$

where $q \geq p>1, \pi_{p q}=\int_{0}^{1} \frac{d s}{\left(1-s^{q}\right)^{\frac{1}{p}}}=\frac{2}{q} B\left(\frac{1}{q}, \frac{1}{p^{*}}\right), p^{*}=\frac{p}{p-1}, \alpha^{-\frac{1}{q}}+\beta^{-\frac{1}{q}}=2, T=$ $\pi_{p q} / \alpha^{\frac{1}{q}}$ and $B(r, s)=\int_{0}^{1} t^{r-1}(1-t)^{s-1} d t$ is the β function for $r>0, s>0$ and $h \in L^{\infty}(0, T)$.

If $q=p$, then (19) reduces to (1). Therefore we consider the case $q>p$ only. Similar to the results of [7], we can define (with minor modification) the following $2 \pi_{p q}$-periodic function $u=\sin _{p q} t$ which is the solution of the following initial value problem:

$$
\begin{align*}
& \left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{(p-1) q}{p} \phi_{q}(u)=0, \tag{20}\\
& u(0)=0, \quad u^{\prime}(0)=1
\end{align*}
$$

which for $t \in\left[0, \frac{\pi_{p q}}{2}\right]$ can be given implicitly by the formula

$$
t=\int_{0}^{\sin _{p q} t} \frac{d s}{\left(1-s^{q}\right)^{\frac{1}{p}}}
$$

and $\sin _{p q} t=\sin _{p q}\left(\pi_{p q}-t\right)$ for $t \in\left[\frac{\pi_{p q}}{2}, \pi_{p q}\right] ; \sin _{p q} t=-\sin _{p q}\left(2 \pi_{p q}-t\right)$ for $t \in$ $\left[\pi_{p q}, 2 \pi_{p q}\right]$. Define also $\cos _{p q} t=\frac{d}{d t}\left(\sin _{p q} t\right)$. Then

$$
\left|\sin _{p q} t\right|^{q}+\left|\cos _{p q} t\right|^{p} \equiv 1, \quad \forall t \in R .
$$

Let $\bar{S}(t)$ be the solution of the following initial value problem:

$$
\begin{align*}
& \left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{(p-1) q}{p}\left[\alpha \phi_{q}\left(u^{+}\right)-\beta \phi_{q}\left(u^{-}\right)\right]=0, \tag{21}\\
& u(0)=0, \quad u^{\prime}(0)=1 .
\end{align*}
$$

Then it is easy to see that \bar{S} is $2 \pi_{p q}$-periodic and can be expressed explicitly as

$$
\bar{S}(t)= \begin{cases}\alpha^{-\frac{1}{q}} \sin _{p q} \alpha^{\frac{1}{q}} t, & t \in[0, T] ; \\ -\beta^{-\frac{1}{q}} \sin _{p q} \beta^{\frac{1}{q}}(t-T), & t \in\left[T, 2 \pi_{p q}\right] .\end{cases}
$$

Moreover, it is also easy to verify by using (21) that $\bar{S}(t)$ satisfies the following identity:

$$
\begin{equation*}
\left|S^{\prime}(t)\right|^{p}+\alpha\left(S^{+}(t)\right)^{q}+\beta\left(S^{-}(t)\right)^{q} \equiv 1 . \tag{22}
\end{equation*}
$$

For $\rho>0, \theta \in \mathbb{R}$, define the following generalized polar coordinates transformation \bar{T} as:

$$
\begin{equation*}
u=\rho^{\sigma} \bar{S}(\theta), \quad u^{\prime}=\rho^{\frac{1}{p-1}} \bar{S}^{\prime}(\theta) \tag{23}
\end{equation*}
$$

where

$$
\sigma=\frac{q-p}{(p-1) q}>0
$$

Then by using (22), we can show that (19) is changed into the following system:

$$
\begin{align*}
& \frac{d \rho}{d t}=(p-1) \bar{S}^{\prime}(\theta) h(t), \\
& \frac{d \theta}{d t}=\rho^{\sigma}-\frac{p}{q} \rho^{-1} \bar{S}(\theta) h(t), \tag{24}
\end{align*}
$$

Theorem 3. Suppose $q>p, h \in L^{\infty}(0, T)$. Then the boundary value problem (19) has infinitely many solutions $u_{n}(t)$ and the number of zeros of u_{n} in $(0, T)$ increases to ∞ as $n \rightarrow \infty$, moreover, $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$.

Proof. From above discussion, (19) is changed into (24). Now suppose $\theta(0)=0$, then the second equation $u(T)=0$ in (2) is equivalent to $\theta(T)=k T$ for some $k \in \mathbb{Z}$. The assumption $q>p$ implies $\sigma>0$. Let $\rho(0)=\rho_{0} \gg 1$, then it follows from the first equation of (24) that

$$
\begin{align*}
& \rho(t)=\rho_{0}+O(1), \tag{25}\\
& \rho^{-1}(t)=\rho_{0}^{-1}+o\left(\rho_{0}^{-1}\right), \quad t \in(0, T)
\end{align*}
$$

Substituting (25) into the second equation of (24) and integrating from 0 to T, we get

$$
\begin{equation*}
\theta(T)=\rho_{0}^{\sigma} T+o\left(\rho_{0}^{\sigma}\right)=\rho_{0}^{\sigma} T(1+o(1)) \tag{26}
\end{equation*}
$$

It follows from (26) and the fact that $\theta(T)$ depends continuously on ρ_{0} that there exist infinitely many $n \in \mathbb{N}$ such

$$
\theta(T)=n \pi_{p q}
$$

and $\rho_{n}(0) \rightarrow \infty$ as $n \rightarrow \infty$.
Let $\alpha=\beta=1$, then $T=\pi_{p q}$ and $\bar{S}(t)=\sin _{p q}(t)$. In this case, Theorem 3 reduces to

Corollary 4. Let $q>p>1, h \in L^{\infty}\left(0, \pi_{p q}\right)$. Then the following boundary value problem

$$
\begin{aligned}
& \left(\phi_{p}\left(u^{\prime}\right)\right)^{\prime}+\frac{(p-1) q}{p} \phi_{q}(u)=(p-1) h(t), \\
& u(0)=u\left(\pi_{p q}\right)=0,
\end{aligned}
$$

has infinitely many solutions $u_{n}(t)$ and the number of zeros of u_{n} in $\left(0, \pi_{p q}\right)$ increases to ∞ as $n \rightarrow \infty$, moreover, $\left\|u_{n}\right\| \rightarrow \infty$ as $n \rightarrow \infty$.
Remark 2. Let us compare the key approximation formulas in [8] and in this paper. Let $\alpha=\beta=1, S(t)=\sin _{p} t$. In [8], for $|\alpha| \gg 1$, the initial condition is

$$
\begin{equation*}
u(0)=0, \quad u^{\prime}(0)=\alpha= \pm|\alpha|, \tag{27}
\end{equation*}
$$

In our paper, the initial condition is

$$
\begin{equation*}
u(0)=0, u^{\prime}(0)=\rho_{0}^{\frac{1}{p-1}} S^{\prime}(\theta(0))= \pm \rho_{0}^{\frac{1}{p-1}} \tag{28}
\end{equation*}
$$

Comparing (27) with (28), we get $\rho_{0}=|\alpha|^{p-1} \gg 1$ and $\alpha>0$ is equivalent to $\theta(0)=0$, and $\alpha<0$ is equivalent to $\theta(0)=\pi_{p}=T$. Moreover, as $\rho=|\alpha| \gg 1$, we have $\frac{d \theta}{d t}=1+O\left(\rho_{0}^{-1}\right) \approx 1$, hence it is easy to verify that the following two key approximations are equivalent:

Assume $\int_{0}^{\pi_{p}} \sin _{p} t h(t) d t=0$, then in $[8]$

$$
\begin{equation*}
t_{1}^{\alpha}=\pi_{p}+(p-2) J_{h}|\alpha|^{2(1-p)}+o\left(|\alpha|^{2(1-p)}\right), \tag{29}
\end{equation*}
$$

where t_{1}^{α} is the first positive zero of $u(t)$, and $J_{h}>0$. While in our paper,

$$
\begin{equation*}
\theta\left(\pi_{p}\right)=\pi+\frac{(2-p)}{2} L \rho_{0}^{-2}+o\left(\rho_{0}^{-2}\right) \tag{30}
\end{equation*}
$$

where $L>0$. It is now easy for us to see that (29) and (30) are equivalent. Besides, the results of our paper remains valid when we replace the function $h(t)$ in the right
side of (1) by a continuous and bounded function $f(t, u)$, provided that the limits $\lim _{u \rightarrow \pm \infty} f(t, u)=f(t, \pm \infty) \in L^{\infty}(0, T)$ exists and

$$
\lim _{u \rightarrow \pm \infty}|u|^{p-1}[f(t, u)-f(t, \pm \infty)]=0
$$

Finally, we end up this paper with a remark that the existence of solution of (19) when $1<q<p$ is left as an open question.

References

1. M. Guedda \& L. Veron: Bifurcation phenomena associated to the p-Laplace operator. Trans. Amer. Math. Soc. 215 (1988), 419-431.
2. M. Del Pino, M. Elgueta \& R. Manasevich: A homotopic deformation alone p of a LeraySchauder degree result and existence for $\left(\left|u^{\prime}\right|^{p-2} u^{\prime}\right)^{\prime}+f(t, u)=0, u(0)=u(T)=0$, $P>1$, J. Differential Equations 80 (1989), 1-13.
3. M. Del Pino \& R. Manasevich: Multiple solutions for the p-Laplacian under global nonresonance. Proc. Amer. Math. Soc. 112 (1991), 131-138.
4. P. Binding, P. Drabek \& Y. Huang: On the range of the p-Laplacian. Appl. Math. Lett. 10 (1997), 77-82.
5. M. Del Pino \& R. Manasevich: Global bifurcation from the eigenvalues of the p Laplacian. J. Differential Equations 92 (1991), 226-251.
6. P. Binding, P. Drabek \& Y. Huang: On the Fredholm alternative for the p-Laplacian, Proc. Amer. Math. Soc. 125(1997) 3555-3559.
7. P. Drabek \& R. Manasevich: On the closed solution to some nonhomogeneous eigenvalue problems with p-Laplacian. Diff. Integral Equations 12 (1999), 773-788.
8. M. Del Pino, P. Drabek \& R. Manasevich: The Fredholm alternative at the first eigenvalue for the one dimensional p-Laplacian. J. Differential Equations 151 (1999), 386419.
9. P. Drabek, P. Girg \& R. Manasevich: Generic Fredholm alternative-type results for the one dimensional p-Laplacian. Nonlinear Differ. Eqns. Appl. 8(2001), 285-298.
10. R. Manasevich \& P. Takac: On the Fredholm alternative for the p-Laplacian in one dimension. Proc. London Math. Soc. 84 (2002), 324-342.
11. X. Yang: The Fredholm alternative for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 299 (2004), 494-507.

Department of Mathematics, University of Ulsan, Ulsan 689-749, Korea
Email address: yikim@mail.ulsan.ac.kr

[^0]: Received by the editors May 29, 2010. Revised July 21, 2010. Accepted August 18, 2010. 2000 Mathematics Subject Classification. 34A12, 34A34.
 Key words and phrases. Dirichlet problem, p-Laplacian, Fredholm alternative.

