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DEGENERATE SEMILINEAR ELLIPTIC PROBLEMS NEAR

RESONANCE WITH A NONPRINCIPAL EIGENVALUE

Hong-Min Suo and Chun-Lei Tang

Abstract. Using the minimax methods in critical point theory, we study
the multiplicity of solutions for a class of degenerate Dirichlet problem in
the case near resonance.

1. Introduction and main results

Consider degenerate semilinear elliptic equation of the form

(1)

{
−div(a(x)∇u) = λu+ f(x, u) + h(x) in Ω,
u = 0, on ∂Ω,

where Ω is a bounded domain in RN (N ≥ 2) with smooth boundary ∂Ω, a is
a nonnegative measurable weight on Ω, λ ∈ R, h ∈ L2(Ω), and f : Ω× R → R
is a Carathéodory function and satisfies the following assumption.

(A) There exist constants C > 0 and q ∈ (1, 2) such that

|f(x, t)| ≤ C(1 + |t|q−1).

Problem (1) was introduced as models for several physical phenomena re-
lated to equilibrium of continuous media which somewhere are perfect insula-
tors or perfect conductors (see [5]).

Assume that

(Hα) a ∈ L1
loc(Ω), and there exists a constant α ∈ [0,+∞) such that

lim inf
x→z

|x− z|−αa(x) > 0

for every z ∈ Ω.
From this assumption, Caldiroli and Musina in [2] have proved that there exist
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a finite set Z = {z1, z2, . . . , zk} ⊂ Ω and numbers γ, δ > 0 such that the balls
Bi = Bγ(zi)(i = 1, 2, . . . , k) are mutually disjoint and

a(x) ≥ δ|x− zi|α, ∀x ∈ Bi, i = 1, 2, . . . , k,

and

a(x) ≥ δ, ∀x ∈ Ω \
k∪

i=1

Bi.

This says that the elliptic operator in problem (1) is degenerate and the set
Za = {x ∈ Ω : a(x) = 0} is finite.

By the presence of function a, weak solutions of equation (1) must be found
in a suitable space. To this purpose, we define the space H1

0 (Ω, a) (see [2]) as
the closures of C∞

0 (Ω) with the norm

∥u∥ =

(∫
Ω

a(x)|∇u|2dx
) 1

2

for u ∈ C∞
0 (Ω). In fact, H1

0 (Ω, a) is a Hilbert space with the inner product

⟨u, v⟩ =
∫
Ω

a(x)(∇u,∇v)dx

for u, v ∈ H1
0 (Ω, a). Moreover, we have the following lemma.

Lemma 1 (Proposition 3.2, [2]). Assume that (Hα) holds for some α ∈ (0, 2].
Then H1

0 (Ω, a) ↪→ Lp(Ω) is compact if p ∈ [1, 2∗α), where 2∗α = 2N
N−2+α .

From this lemma, it is not difficult to check that the associated functional
of problem (1) J : H1

0 (Ω, a) → R defined as follows

J(u) =
1

2

∫
Ω

(a(x)|∇u|2 − λu2)dx−
∫
Ω

F (x, u)dx−
∫
Ω

hudx,

is of class C1, where F (x, t) =
∫ t

0
f(x, s)ds. And

⟨J ′(u), v)⟩ =
∫
Ω

a(x)(∇u,∇v)dx− λ

∫
Ω

uvdx−
∫
Ω

f(x, u)vdx−
∫
Ω

hvdx

for u, v ∈ H1
0 (Ω, a). Furthermore, the weak solutions of system (1) are exactly

the critical points of J in H1
0 (Ω, a).

In addition, from Lemma 1 it follows that the operator L defined by Lu :=
−div(a(x)∇u) fits into the standard spectral theory for compact self-adjoint
operators. Then there exists an increasing unbounded sequence of positive
eigenvalues 0 < λ1(a) < λ2(a) < · · · < λk(a) < · · · (see [2]). Denote by
Ek = ker(L−λk(a)) the eigenspace corresponding to eigenvalue λk(a)(k ∈ N+),
then Ek is a finite dimension space and we denote by Hk = E1⊕E2⊕· · ·⊕Ek.

There are many results on multiplicity of solutions for non-degenerate equa-
tions like problem (1) approaching the first eigenvalue of corresponding linear
problem. For instance, [13, 14, 1, 9, 4, 3] considered this problem in one or
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higher dimension via bifurcation theory or degree theory. As for results via
variational methods, the readers are referred to [11, 10, 16, 6].

Results for higher eigenvalues were obtained in [9], [13] and [7]. Where
[9] only considered the one-dimensional case via bifurcation from infinity and
degree theory. [13] used bifurcation theory to deal with the eigenvalues of odd
multiplicity. Recently, in [7], de Paiva and Massa considered this problem in
any spatial dimension, and proved that there exist at least two solutions near
resonance with any nonprincipal eigenvalue.

In the present paper, we extend the main results of [7] to the variational
degenerate elliptic problem (1) by Local Saddle Point Theorem [12, 8] and
Mountain Pass Lemma. Our main results are the following theorems.

Theorem 1. Suppose that (Hα) holds for some α ∈ (0, 2). Assume that f
satisfies (A) and the following condition

lim
|t|→∞

f(x, t)t

|t|
= +∞(2)

uniformly for x ∈ Ω. Then there exists δ0 > 0 such that for every λ ∈ (λk(a)−
δ0, λk(a)), where k ≥ 2, the problem (1) has at least two solutions.

Theorem 2. Suppose that (Hα) holds for some α ∈ (0, 2), f satisfies (A) and
the following condition

lim
|t|→∞

F (x, t) = +∞(3)

uniformly for x ∈ Ω. Assume that∫
Ω

hϕdx = 0, ∀ϕ ∈ Ek.(4)

Then there exists δ1 > 0 such that for every λ ∈ (λk(a) − δ1, λk(a)), where
k ≥ 2, the problem (1) has at least two solutions.

Theorem 3. Suppose that (Hα) holds for some α ∈ (0, 2). Assume that f
satisfies (A) and the following condition

lim
|t|→∞

f(x, t)t

|t|
= −∞(5)

uniformly for x ∈ Ω. Then there exists δ2 > 0 such that for every λ ∈
(λk(a), λk(a) + δ2), where k ≥ 2, the problem (1) has at least two solutions.

Theorem 4. Suppose that (Hα) holds for some α ∈ (0, 2), f satisfies (A) and
the following condition

lim
|t|→∞

F (x, t) = −∞(6)

uniformly for x ∈ Ω. Assume that∫
Ω

hϕdx = 0, ∀ϕ ∈ Ek.(7)
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Then there exists δ3 > 0 such that for every λ ∈ (λk(a), λk(a) + δ3), where
k ≥ 2, the problem (1) has at least two solutions.

In order to prove our results, we need two abstract results as follows.

Theorem A (Link Theorem [15]). Let H be a Hilbert space. Suppose that
J ∈ C1(H,R) satisfies the (PS) condition. Consider a closed subset S ⊂ H
and a submanifold Q ⊂ H with relative boundary ∂Q. Suppose that

(i) S and ∂Q link,
(ii) α = infu∈S J(u) > supu∈∂Q J(u) = α0.
Let

Γ = {h ∈ C0(H,H) : h|∂Q = id},
then the number

β = inf
h∈Γ

sup
u∈Q

J (h(u))

defines a critical value β ≥ α of J .

Theorem B (Local Saddle Point Theorem [12, 8]). Let H = X1 ⊕ X2 be a
Hilbert space where X1 has finite dimension, J ∈ C1(H,R) satisfying the (PS)
condition and such that for given ρ1, ρ2 > 0,

sup
u∈ρ1S1

J(u) < a = inf
u∈ρ2B2

J(u) ≤ b = sup
u∈ρ1B1

J(u) < inf
u∈ρ2S2

J(u),

where Bi and Si represent the unit ball and the unit sphere in Xi, i = 1, 2.
Then there exists a critical point u0 such that J(u0) ∈ [a, b].

2. Proof of theorems

Define

Bk−1 = {u ∈ Hk−1 : ∥u∥ ≤ 1}, Bk = {u ∈ Hk : ∥u∥ ≤ 1},

B⊥
k = {u ∈ H⊥

k : ∥u∥ ≤ 1},
and Sk−1, Sk, S

⊥
k are respectively their relative boundaries.

By assumption (A) and Lemma 1, one has

(8)

∣∣∣∣∫
Ω

F (x, u)dx

∣∣∣∣ ≤ C(1 + ∥u∥q).

Moreover, denote by λk = λk(a) for short, we have

(9)

∫
Ω

u2dx ≥ 1

λk
∥u∥2 for u ∈ Hk,

(10)

∫
Ω

u2dx ≤ 1

λk+1
∥u∥2 for u ∈ H⊥

k ,

(11)

∣∣∣∣∫
Ω

hudx

∣∣∣∣ ≤ ∥h∥L2∥u∥L2 ≤ S∥h∥L2∥u∥,

where S is the best embedding constant.
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Proof of Theorem 1. The proof will be divided into four steps.
Step 1. For λ ∈ (λk−1, λk), the functional J satisfies the (PS) condition.
Using (9) and (10) we have

(12)

∫
Ω

a(x)|∇u|2dx− λ

∫
Ω

|u|2dx ≤ λk−1 − λ

λk−1
∥u∥2, ∀u ∈ Hk−1,

(13)

∫
Ω

a(x)|∇u|2dx− λ

∫
Ω

|u|2dx ≥ λk − λ

λk
∥u∥2, ∀u ∈ H⊥

k−1.

Let {un} ⊂ H1
0 (Ω, a) such that {J(un)} is bounded and J

′
(un) → 0 as n→ ∞.

We first prove that {un} is bounded. By negation, suppose that ∥un∥ → ∞ as
n→ ∞. Let un = vn + wn ∈ Hk−1 ⊕H⊥

k−1. From Hölder inequality and (11),
we have

⟨J ′(un), (−vn)⟩

= λ

∫
Ω

unvndx−
∫
Ω

a(x)∇un · ∇vndx+

∫
Ω

f(x, un)vndx+

∫
Ω

hvndx

≥ λ− λk−1

λk−1
∥vn∥2 − C

∫
Ω

(1 + |un|q−1)|vn|dx− S∥h∥L2∥vn∥

≥ λ− λk−1

λk−1
∥vn∥2 − C∥vn∥L1 − C∥un∥q−1

Lq ∥vn∥Lq − S∥h∥L2∥vn∥

≥ λ− λk−1

λk−1
∥vn∥2 − CS∥vn∥ − CSq∥un∥q−1∥vn∥ − S∥h∥L2∥vn∥,

dividing the above inequality by ∥un∥2, noting that ⟨J ′(un),−vn⟩
∥vn∥ → 0, we have

∥vn∥
∥un∥

→ 0

as n→ ∞. Similarly, one has

∥wn∥
∥un∥

→ 0

as n→ ∞. Hence,

1 =
∥un∥
∥un∥

≤ ∥wn∥+ ∥vn∥
∥un∥

→ 0 as n→ ∞,

which is a contradiction. So {un} is bounded.
In the following, we will prove that {un} has a convergent subsequence. Let

I(u) =

∫
Ω

F (x, u)dx, ∀u ∈ H1
0 (Ω, a).

Obviously, I ∈ C1(H1
0 (Ω, a),R) and

⟨I ′(u), v⟩ =
∫
Ω

f(x, u)vdx, ∀u, v ∈ H1
0 (Ω, a).
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Moreover, I ′ : H1
0 (Ω, a) → (H1

0 (Ω, a))
∗ is a compact operator by Lemma 1.

Since {un} is bounded, i.e., there exists M > 0 such that ∥un∥ ≤ M . Then
there exist a subsequence {unk

} ⊂ {un} and u ∈ H1
0 (Ω, a) such that I ′(unk

) →
I ′(u). Denote by unk

= ψnk
+ ϕnk

∈ Hk−1 ⊕H⊥
k−1, by (12) one has

⟨J ′(unk
)− J ′(unj ), ψnj − ψnk

⟩

= −
∫
Ω

a(x)|∇(ψnk
− ψnj )|2dx+ λ

∫
Ω

(ψnk
− ψnj )

2dx

− ⟨I ′(unk
)− I ′(unj ), ψnj − ψnk

⟩

≥ λ− λk−1

λk−1
∥ψnk

− ψnj∥2 − ⟨I ′(unk
)− I ′(unj ), ψnj − ψnk

⟩,

so we have

λ− λk−1

λk−1
∥ψnk

− ψnj∥2 ≤ 2M(∥J ′(unk
)∥+ ∥J ′(unj∥+ ∥I ′(unk

)− I ′(unj )∥),

which implies that

∥ψnk
− ψnj∥ → 0 as k, j → ∞,

that is, {ψnk
} is a Cauchy sequence in H1

0 (Ω, a).
In a similar way, we can prove that {ϕnk

} also has a Cauchy subsequence
{ϕnkj

}. To sum up, we have showed that {unkj
} is a Cauchy sequence in

H1
0 (Ω, a). Hence J satisfies the (PS) condition.
Step 2. We will prove that there exists δ0 > 0 such that for λ ∈ (λk−δ0, λk),

the first solution of problem (1) will be obtained by Theorem A.
For u ∈ H⊥

k , from (8), (10) and (11) it follows that

J(u) ≥ 1

2

(
1− λ

λk+1

)
∥u∥2 − C(1 + ∥u∥q)− S∥h∥L2∥u∥.

If λ ∈ (λk−1, λk), 1 − λ
λk+1

> 1 − λk

λk+1
> 0, which implies that there exists a

constant D1 ∈ R such that J(u) ≥ D1 for all u ∈ H⊥
k .

In addition, it follows from (2) and (A) that for any M1 > 0, there exists
C1 > 0 such that

(14) F (x, t) ≥M1|t| − C1

for t ∈ R and x ∈ Ω. Set δ := λk − λ > 0, for u ∈ KSk, from (8), (9), (11),
(14) and all the norms in a finite dimensional subspace are equivalent it follows
that

J(u) ≤ 1

2

(
1− λ

λk

)
∥u∥2 −

∫
Ω

F (x, u)dx+ S∥h∥L2∥u∥

≤ δ

2λk
∥u∥2 −M1

∫
Ω

|u|dx+ C1|Ω|+ S∥h∥L2∥u∥

≤ δ

2λk
∥u∥2 −M2∥u∥+ C1|Ω|
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=
δ

2λk
K2 −M2K + C1|Ω|,(15)

whereM2 is a positive constant. We fixK = K1 > 0 such that C1|Ω|−M2K1 <
D1 − 1 and choose 0 < δ < 2λk/K

2
1 = δ0, then J(u) < D1 for all u ∈ K1Sk.

Let
Γ1 = {γ ∈ C0(K1Bk;H

1
0 (Ω, a)) : γ|K1Sk

= id}.
Since K1Sk and H⊥

k link, by Theorem A we can obtain the first solution cor-
responding to a critical point at the critical level

c1 = inf
γ∈Γ1

sup
v∈K1Bk

J (γ(v)) .

Step 3. We shall obtain the second solution of problem (1) by Theorem A
once more.

On one hand, for λ ∈ (λk − δ0, λk) and u ∈ H⊥
k−1, by (8), (10) and (11), we

get

J(u) ≥ 1

2

(
1− λ

λk

)
∥u∥2 − C(1 + ∥u∥q)− S∥h∥L2∥u∥,(16)

which implies that there exists a constant D2 ∈ R such that J(u) ≥ D2 for all
u ∈ H⊥

k−1.
On the other hand, for u ∈ Hk−1, by estimates (8), (9) and (11), we have

J(u) ≤ 1

2

(
1− λ

λk−1

)
∥u∥2 + C(1 + ∥u∥q) + ∥h∥L2∥u∥.

For λ ∈ (λk−1, λk), we have 1 − λ
λk−1

< 0, so for given K1 in Step 2, we can

find suitably large ρ1 > K1 such that J(u) < D2 for all u ∈ ρ1Sk−1.
Let

Γ2 = {γ ∈ C0(ρ1Bk−1;H
1
0 (Ω, a)) : γ|ρ1Sk−1

= id}.
Since ρ1Sk−1 andH

⊥
k−1 link, by Theorem A we can obtained the second solution

corresponding to a critical point at the level

c2 = inf
γ∈Γ2

sup
v∈ρ1Bk−1

J (γ(v)) .

Step 4. We show that c2 < c1, which implies that these two solutions are
different.

On one hand, from the estimates of Step 2, we have that c1 ≥ D1.
On the other hand, consider the continuous map γ1 : ρ1Bk−1 → H define

by

(17) γ1(u) =

{
u+ (K2

1 − ∥u∥2)1/2ek ∥u∥ ≤ K1,
u K1 ≤ ∥u∥ ≤ ρ1,

where ek ∈ Ek and ∥ek∥ = 1. Then we observe that the map γ1 ∈ Γ2.
For u ∈ Hk−1, in a way similar to (15), one gets

J(u) ≤ 1

2

(
1− λ

λk−1

)
∥u∥2 −

∫
Ω

F (x, u)dx+ S∥h∥L2∥u∥
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≤
(
λk−1 − λ

2λk−1

)
∥u∥2 −M1∥u∥+ C1|Ω|+ S∥h∥L2∥u∥

≤
(
λk−1 − λ

2λk−1

)
∥u∥2 −M2∥u∥+ C1|Ω|.(18)

Since λk−1−λ
2λk−1

< 0 and C1|Ω|−M2K1 < D1 by Step 2, we have J(u) < D1 for all

u ∈ Hk−1 with ∥u∥ ≥ K1. For u ∈ K1Bk−1, let γ1(u) = u+ (K2
1 − ∥u∥2)1/2ek,

then γ1(u) ∈ K1Sk, by Step 2, we have J(γ1(u)) < D1. Now we deduce that
supv∈ρ1Bk−1

J (γ1(v)) < D1, which implies that c2 < D1 ≤ c1. Our proof is
completed. □

Proof of Theorem 2. Observing the proof of Theorem 1, here we only need to
prove that under our conditions there exists δ1 > 0 such that for 0 < δ < δ1,
we have J(u) < D1 for all u ∈ K1Sk. Other estimates are obtained by the
same methods as in the proof of Theorem 1.

By (A) and (3), we can easily deduce that

F (x, t) ≥ −C2,(19)

for all t ∈ R and x ∈ Ω where C2 > 0. Now we shall show that in the finite
dimension space Hk, hypotheses (A) and (3) imply that

(20) lim
∥u∥→∞

∫
Ω

F (x, u)dx = lim
K→∞

inf
u∈KSk

∫
Ω

F (x, u)dx = +∞.

First, we say that there exists a constant η > 0 such that the set Ωu =
{x ∈ Ω : |u(x)| > η} has measure |Ωu| > η for all u ∈ Sk. Actually, Hk is a
finite-dimensional subspace and the functions u ∈ Sk are smooth, so they are
uniformly bounded, that is, there exists M3 > 0 such that |u(x)| ≤ M3 for all
x ∈ Ω. Suppose that for ηn → 0(ηn < 1) there exists {un} ⊂ Sk such that
|Ωun

| < ηn. On one hand, by (9), one has

1/λk ≤
∫
Ω

|un|2dx.

On the other hand,∫
Ω

|un|2dx =

(∫
Ωun

|un|2dx+

∫
Ω\Ωun

|un|2dx

)
≤ (M2

3 |Ωun |+ η2n|Ω \ Ωun |)
≤ ηn(M

2
3 + |Ω|)

→ 0.

This is a contradiction.
Now, for any fixed L > 0, setting M4 = (L+ |Ω|C2)η

−1, by (3), there exists
t0 > 0 such that F (x, t) > M4 for |t| > t0. For any K > t0/η and u ∈ Sk, one
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has Ωu ⊆ {x ∈ Ω : |Ku(x)| > t0}. Thus we have∫
|Ku|≥t0

F (x,Ku)dx ≥M4η.

From (19) it follows that∫
|Ku|<t0

F (x,Ku)dx ≥
∫
|Ku|<t0

−C2dx ≥ −C2|Ω|.

To sum up, one has ∫
Ω

F (x,Ku)dx ≥M4η − C2|Ω| = L,

which implies that (20) holds by the arbitrariness of L.

Let λ ∈ [λk+λk−1

2 , λk) and µ := λk−λk−1

2λk−1
> 0. Then

1− λ

λk−1
=
λk−1 − λ

λk−1
≤ λk−1 − λk

2λk−1
= −µ.

For u = v + ϕ ∈ Hk−1 ⊕ Ek with ∥u∥ = K, from (4) it follows that

J(u) ≤ 1

2

(
1− λ

λk−1

)
∥v∥2 + 1

2

(
1− λ

λk

)
∥ϕ∥2 −

∫
Ω

F (x, u)dx−
∫
Ω

hudx

≤ δ

2λk
∥ϕ∥2 − µ

2
∥v∥2 −

∫
Ω

F (x, u)dx+ S∥h∥L2∥v∥

≤ δ

2λk
∥ϕ∥2 − µ

2
∥v∥2 −

∫
Ω

F (x, u)dx+
µ

2
∥v∥2 + S2

2µ
∥h∥2L2

≤ δ

2λk
∥ u∥2 −

∫
Ω

F (x, u)dx+
S2

2µ
∥h∥2L2 .(21)

By (20), we may fix K1 > 0 such that S2

2µ∥h∥
2
L2 −

∫
Ω
F (x, u)dx < D1 − 1 for all

∥u∥ ≥ K1. Then letting 0 < δ < δ1 := 2λk/(K1)
2 > 0, one gets J(u) < D1 for

u ∈ K1Sk.
If u ∈ Hk−1, that is, ϕ = 0. By (21), there exists K1 > 0 such that∫

Ω
F (x, u)dx > S2

2µ∥h∥
2
L2 − D1 + 1, so J(u) ≤ −

∫
Ω
F (x, u)dx + S2

2µ∥h∥
2
L2 <

D1 − 1 < D1 for all u ∈ Hk−1 with ∥u∥ > K1.
The reminders are the same as in the proof of Theorem 1. Hence Theorem

2 holds. □

Proof of Theorem 3. In the case λ ∈ (λk, λk+1), from Step 1 in the proof of
Theorem 1 it follows that the functional J satisfies the (PS) condition.

Step 1. The existence of the first solution of problem (1).
For λ ∈ (λk, λk+1), by assumptions (A) and (5), we will prove the following

estimates: there exist δ2 > 0, G1, K2, E ∈ R, ξ > 0 such that for λ ∈
(λk, λk + δ2), one has

J(u) < G1 for u ∈ Hk−1,(22)
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J(u) > G1 for u ∈ K2S
⊥
k−1,(23)

J(u) > G1 for u ∈ H⊥
k , ∥u∥ ≥ K2,(24)

J(u) > E for u ∈ K2B
⊥
k−1,(25)

J(u) < E for u ∈ ξSk−1.(26)

Thus let X1 = Hk−1 and X2 = H⊥
k−1, by (22)-(26) we have the structure

sup
ξSk−1

J(u) < E ≤ inf
K2B⊥

k−1

J(u) ≤ sup
ξBk−1

J(u) < G1 ≤ inf
K2S⊥

k−1

J(u).

Then the first solution comes from Theorem B corresponding to critical point
at the level d1 ≤ G1.

Now, we give the proofs of estimates above. For u ∈ Hk−1, by (8), (9) and
(11), one has

J(u) ≤ 1

2

(
1− λ

λk−1

)
∥u∥2 + C(1 + ∥u∥q) + S∥h∥L2∥u∥.(27)

For λ ∈ (λk, λk+1), we have 1− λ
λk−1

< λk−1−λk

λk−1
< 0. Then there exists G1 ∈ R

such that (22) holds.
We claim that for G1 above, there exist K2, δ2 > 0 such that for every

λ ∈ (λk, λk + δ2), Eqs.(23) and (24) hold.
In addition, for λ ∈ (λk, λk+1) and u ∈ H⊥

k−1, by (8), (10) and (11), one gets

J(u) ≥ 1

2

(
1− λ

λk

)
∥u∥2 − C(1 + ∥u∥q)− S∥h∥L2∥u∥

≥ 1

2

(
1− λk+1

λk

)
∥u∥2 − C(1 + ∥u∥q)− S∥h∥L2∥u∥,

which implies that J is bounded from below in any bounded subset of H⊥
k−1,

that is, for K2, there exists E ∈ R satisfying (25). Further, by (27), for E and
G1, there exists ξ > 0 such that (26) holds.

It reminds to prove the claim above. Let λ = λk + δ, by Eq.(16), (24) holds

provided that K2 is large enough (say K2 > K̃). Moreover, this value can be
made independent of λ once that δ is small enough.

Next, we will prove (23), that is, we will prove that there exists K2 > 0 such
that J(u) > G1 for u ∈ K2S

⊥
k−1.

Let u = w+ϕ ∈ H⊥
k−1 = H⊥

k ⊕Ek. Since Ek is a finite dimension subspace,
all the norms are equivalent, there exists C0 > 0 such that ∥ϕ∥ ≤ C0∥ϕ∥L1

for all ϕ ∈ Ek. By (A) and (5), we have for (S∥h∥L2 + 1)C0 > 0, there exists
constant C4 such that

(28) −F (x, t) ≥ ((S∥h∥L2 + 1)C0)|t| − C4
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for all t ∈ R and x ∈ Ω. By (10) and (28), one has

J(u) =
1

2

∫
Ω

(|∇(w + ϕ)|2 − λ(w + ϕ)2)dx−
∫
Ω

F (x,w + ϕ)dx−
∫
Ω

h(w + ϕ)dx

(29)

≥ λk+1 − (λk + δ)

2λk+1
∥w∥2 − δ

2λk
∥ϕ∥2

+ (S∥h∥L2 + 1)C0∥ϕ∥L1 − (S∥h∥L2 + 1)C0∥ − w∥L1 − ∥h∥L2∥ϕ∥L2

− ∥h∥L2∥w∥L2 − C4|Ω|

≥ λk+1 − (λk + δ)

2λk+1
∥w∥2 − δ

2λk
∥ϕ∥2

+ (S∥h∥L2 + 1)∥ϕ∥ − |Ω|1/2(S∥h∥L2 + 1)C0∥w∥L2 − S∥h∥L2∥ϕ∥
− S∥h∥L2∥w∥ − C4|Ω|

≥ λk+1 − (λk + δ)

2λk+1
∥w∥2 − δ

2λk
∥ϕ∥2 + ∥ϕ∥ − C5∥w∥ − C6,

where C5 = |Ω|1/2S(S∥h∥L2 + 1)C0 + S∥h∥L2 , C6 = C4|Ω|. Since(
1− δ

2λk
∥u∥
)
∥u∥ ≤ ∥w∥+ ∥ϕ∥ − δ

2λk
(∥ϕ∥2 + ∥w∥2)

≤
(
1− δ

2λk
∥ϕ∥

)
∥ϕ∥+ ∥w∥.

Let δ ≤ (λk+1 − λk)/2, Eq.(29) becomes

J(w + ϕ) ≥λk+1 − (λk + δ)

2λk+1
∥w∥2 − C5∥w∥ − C6 − ∥w∥+

(
1− δ

2λk
∥u∥
)
∥u∥

≥λk+1 − λk
4λk+1

∥w∥2 − (C5 + 1)∥w∥ − C6 +

(
1− δ

2λk
∥u∥
)
∥u∥.(30)

Since λk+1−λk

4λk+1
> 0, there exists C7 ∈ R such that λk+1−λk

4λk+1
∥w∥2−C5∥w∥−C6 ≥

C7. From this and (30) it follows that

J(u) ≥
(
1− δ

2λk
∥u∥
)
∥u∥+ C7.

Now we can choose K2 large enough such that K2 + C7 > G1 + 1 and (24)
holds, then for 0 < δ < min{2λk/K2

2 , (λk+1 − λk)/2} = δ2 and u ∈ K2S
⊥
k−1,

one gets J(u) > G1, that is, (23) holds.
Step 2. The existence of the second solution of problem (1).
For λ ∈ (λk, λk + δ2) and u ∈ H⊥

k , by (8), (10) and (11), we get

J(u) ≥ 1

2

(
1− λ

λk+1

)
∥u∥2 − C(1 + ∥u∥q)− S∥h∥L2∥u∥,(31)

which implies that there exists a constant G2 ∈ R such that J(u) ≥ G2 for all
u ∈ H⊥

k .
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For u ∈ Hk, by (8), (9) and (11), we get

J(u) ≤ 1

2

(
1− λ

λk

)
∥u∥2 + C(1 + ∥u∥q) + S∥h∥L2∥u∥.(32)

then for K2 in Step 1, we can find ρ2 > K2 such that J(u) < G2 for all
u ∈ ρ2Sk.

Let
Γ3 = {γ ∈ C0(ρ2Bk;H

1
0 (Ω)) : γ|ρ2Sk

= id}.
Since ρ2Sk and H⊥

k link, then for every λ ∈ (λk, λk + δ2), the second solution
is obtained by Theorem A corresponding to critical point at the level

d2 = inf
γ∈Γ3

sup
v∈ρ2Bk

J (γ(v)) .

In order to distinguish two solutions obtained above, we need the following
lemma.

Lemma A ([7]). For ρ > K > 0, the set ρSk links the set

Ŵ = {u ∈ H⊥
k : ∥u∥ ≥ K} ∪KS⊥

k−1.

Step 3. we will prove that these two solutions are distinct.
For any map γ ∈ Γ3, from the proof of Step 1, we can choose ρ2 > K2, one

has that the image of γ either intersects K2S
⊥
k−1 or has a point u ∈ H⊥

k with
∥u∥ ≥ K2 by Lemma A. This implies that supv∈ρ2Bk

J(γ(v)) > G1 by estimates
(23) and (24). Then d2 > G1 ≥ d1, which shows that these two solutions are
different. Our proof is completed. □
Proof of Theorem 4. Under assumptions (A), (6) and (7), we only need to prove
that there exist K2, δ3 > 0 such that for λ ∈ (λk, λk + δ3) and G1 given in the
proof of Theorem 3, one has

J(u) > G1

for u ∈ K2S
⊥
k−1.

First we give a conclusion which is similar to Lemma 3 in [17]. Under
the assumptions on F , there exist a constant C8 and G ∈ C(R,R) which is
subadditive, that is,

G(s+ t) ≤ G(s) +G(t)(33)

for all s, t ∈ R, and coercive, that is,

G(s) → +∞(34)

as |s| → ∞, and satisfies that

G(s) ≤ |s|+ 4(35)

for all s ∈ R, such that

−F (x, s) ≥ G(s)− C8(36)

for all s ∈ R and x ∈ Ω.
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In fact, since −F (x, s) → +∞ as |s| → ∞ uniformly for x ∈ Ω, there exists
a sequence of positive integers (nk) with nk+1 > 2nk for all positive integers k
such that

−F (x, s) ≥ k(37)

for all |s| ≥ nk and all x ∈ Ω. Let n0 = 0 and define

G(s) = k + 2 +
|s| − nk−1

nk − nk−1
(38)

for nk−1 ≤ |s| < nk, where k ∈ N. By the definition of G, we have

k + 2 ≤ G(s) ≤ k + 3(39)

for all nk−1 ≤ |s| < nk. By (6) and F ∈ C1(Ω × R,R), there exists CF > 0
such that

−F (x, s) ≥ −CF(40)

for all (x, s) ∈ Ω× R, which implies that

−F (x, s) ≥ G(s)− C8,(41)

where C8 = CF + 4. Indeed, when nk−1 ≤ |s| < nk for some k ≥ 2, one has,
by (37) and (39),

−F (x, s) ≥ k − 1 ≥ G(s)− 4 ≥ G(s)− C8

for all x ∈ Ω. When |s| < n1, we have, by (40) and (39),

−F (x, s) ≥ −CF = 4− C8 ≥ G(s)− C8

for all x ∈ Ω.
It is obvious that G is continuous and coercive. Moreover one has

G(s) ≤ |s|+ 4

for all s ∈ R. In fact, for every s ∈ R there exists k ∈ N such that

nk−1 ≤ |s| < nk,

which implies that

G(s) ≤ (k − 1) + 4 ≤ nk−1 + 4 ≤ |s|+ 4

for all s ∈ R by (39) and the fact that nk ≥ k for all integers k ≥ 0.
Now we only need to prove the subadditivity of G. Let

nk−1 ≤ |s| < nk, nj−1 ≤ |t| < nj ,

and m = max{k, j}. Then we have

|s+ t| ≤ |s|+ |t| < nk + nj ≤ 2nm < nm+1.

Hence we obtain, by (39),

G(s+ t) ≤ m+ 4 ≤ k + 2 + j + 2 ≤ G(s) +G(t),

which shows that G is subadditive.
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For u := w+ ϕ ∈ H⊥
k−1 = H⊥

k ⊕Ek, let 0 < δ < (λk+1 − λk)/2, by (10), (6),
(36), (33) and (35), one gets

J(w + ϕ) =
1

2

∫
Ω

a(x)|∇(w + ϕ)|2dx− λ

2

∫
Ω

(w + ϕ,w + ϕ)dx

−
∫
Ω

F (x,w + ϕ)dx−
∫
Ω

(h,w + ϕ)dx

≥ λk+1 − (λk + δ)

2λk+1
∥w∥2 − δ

2λk
∥ϕ∥2

+

∫
Ω

G(ϕ+ w)dx− C8|Ω| −
∫
Ω

(h,w)dx

≥ λk+1 − (λk + δ)

2λk+1
∥w∥2 − δ

2λk
∥ϕ∥2

+

∫
Ω

G(ϕ)dx−
∫
Ω

G(−w)dx− C8|Ω| −
∫
Ω

(h,w)dx

≥ λk+1 − λk
4λk+1

∥w∥2 − δ

2λk
∥ϕ∥2

+

∫
Ω

G(ϕ)dx−
∫
Ω

(|w|+ 4)dx− C8|Ω| −
∫
Ω

(h,w)dx

≥ λk+1 − λk
4λk+1

∥w∥2 − δ

2λk
∥u∥2

+

∫
Ω

G(ϕ)dx− (S|Ω|+ S∥h∥L2)∥w∥ − C9

= g(w) +

∫
Ω

G(ϕ)dx− δ

2λk
∥u∥2,(42)

where g(w) = λk+1−λk

4λk+1
∥w∥2 − (S|Ω| + S∥h∥L2)∥w∥ − C9, C9 = (4 + C8)|Ω|.

Since ϕ ∈ Ek, Hk is a finite-dimensional subspace, and G is coercive, from the
proof of (20), one can get

lim
∥ϕ∥→∞

∫
Ω

G(ϕ)dx = +∞,

that is,
∫
Ω
G(ϕ)dx is coercive onHk. Since

λk+1−λk

4λk+1
> 0, so g is coercive onH⊥

k .

Moreover,
∫
Ω
G(ϕ)dx and g(w) are bounded from below respectively in Ek and

H⊥
k , then g(w)+

∫
Ω
G(ϕ)dx is coercive onH⊥

k−1 = H⊥
k ⊕Ek. Now we can choose

K2 large enough such that g(w) +
∫
Ω
G(ϕ)dx > G1 + 1 for all u ∈ H⊥

k−1 with

∥u∥ ≥ K2, and (24) holds. Then for 0 < δ < min{2λk/K2
2 , (λk+1−λk)/2} = δ3,

we have J(u) > G1 for u ∈ K2S
⊥
k−1.

The reminders are the same as in the proof of Theorem 3. Hence Theorem
4 holds. □



DEGENERATE SEMILINEAR ELLIPTIC PROBLEMS NEAR RESONANCE 683

References

[1] M. Badiale and D. Lupo, Some remarks on a multiplicity result by Mawhin and Schmitt,
Acad. Roy. Belg. Bull. Cl. Sci. (5) 65 (1989), no. 6-9, 210224.

[2] P. Caldiroli and R. Musina, On a variational degenerate elliptic problem, Nonlinear

Differential Equations Appl. 7 (2000), no. 2, 187-99.
[3] R. Chiappinelli and D. G. de Figueiredo, Bifurcation from infinity and multiple solutions

for an elliptic system, Differential Integral Equations 6 (1993), no. 4, 757–771.
[4] R. Chiappinelli, J. Mawhin, and R. Nugari, Bifurcation from infinity and multiple so-

lutions for some Dirichlet problems with unbounded nonlinearities, Nonlinear Anal. 18
(1992), no. 12, 1099–1112.

[5] R. Dautary and J. L. Lions, Mathematical Analysis and Numerical Methods for Science
and Technology. Vol. 1., Springer-Verlag, Berlin, 1990.
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