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NONTRIVIAL PERIODIC SOLUTION FOR THE
SUPERQUADRATIC PARABOLIC PROBLEM

TACKSUN JUNG AND Q-HEUNG CHOT*

ABSTRACT. We show the existence of a nontrivial periodic solution
for the superquadratic parabolic equation with Dirichlet boundary
condition and periodic condition with a superquadratic nonlinear
term at infinity which have continuous derivatives. We use the crit-
ical point theory on the real Hilbert space La(Q x (0,27)). We also
use the variational linking theorem which is a generalization of the
mountain pass theorem.

1. Introduction

Let 2 be a bounded, connected open subset of R with smooth bound-
ary 0f). In this paper we consider the multiplicity of the solutions of the
following parabolic boundary value problem

Dy = Au+ F,(x,t,u) in QxR, (1.1)
u(z,t) =0, red, teR,

u(z,t) =u(z, t+T), in QxR,
where the period T is given and F': {2 x R X R — R is a superquadratic
function at infinity which has a continuous derivative F,(z,t,u) for al-
most any z € (). Moreover we assume that F' satisfies the following
conditions:
(F1) F(z,t,0) = Fy(x,t,0) = Fy(z,t,0) = Fp(2,t,0) = Fy(z,t,0) =
Fo(x,t,0) =0, F(x,t,r) > 0if r # 0, inf @ yeaxr F(x,t, 1) > 0;

|r|=R
(F2) [Fo(z,t,r)| < e(|r]”) Y, T, r;
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(F3) rE.(x,t,r) > uF(x,t,r) Ve, t, r;

(F4) |Fy(z,t,7)| < dF(z,t,7)°

where ¢ >0,d >0, R >0, p €]2,2°[, v < 2" —1—(2* — p)(1 — %-) and
5 <0< 5.
In this paper we consider the case T' = 2m. That is

Dy = Au+ F,(z,t,u) in xR, (1.2)
u(x,t) =0, red, teR,

u(z,t) = u(z,t + 2m), in Qx R,

The physical phenomena for this kind of parabolic boundary value prob-
lem occur in the heat flow dynamics with superquadratic nonlinearity.
We observe that 0 < A\; < Ay < --- < A\ — o0 are the eigenvalues of
the eigenvalue problem —Au = Au in €, u|sgg = 0 and ¢y is the eigen-
function corresponding to the eigenvalue A for each k. We note that
the first eigenfunction ¢, (x) > 0.

The purpose of this paper is to find the number of weak solutions of
(1.2) under the assumptions (F'1) — (F'4) on the nonlinear term F'.

The steady-state case of (1.1) is the elliptic problem

Aw+ F(r,w)=0 in (1.3)

w =10 on Of).

For the multiplicity results of (1.3) the readers refer to [9].
The main result is the following:

THEOREM 1.1. Assume that F' satisfies the conditions (F'1) — (F'4).
Then (1.2) has a nontrivial periodic solution.

In section 2 we introduce the Hilbert space H whose elements are ex-
pressed by the square integrable Fourier series expansions on €2 x (0, 27),
consider the parabolic problem (1.2) on H and obtain some results on
the operator D; — A and F. In section 3 we introduce the variational
linking theorem which is a crucial role for the proof of Theorem 1.1
and show that I satisfies the linking geometry. In section 4 we prove
Theorem 1.1.
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2. Parabolic problem on H

Let @ be the space 2 x (0,27). The space Ly (€2 x (0,27)) is a Hilbert
space equipped with the usual inner product

2
< v, w >:/ /v(:v,t)w(a:,t)d:xdt
o Jao

and a norm

]| 22(q) = V< v, v >.
We shall work first in the complex space Lo(§2 x (0,27)) but shall later
switch to the real space. The functions

it
\ 2T ’

form a complete orthonormal basis in Ly(€2 x (0,27)). Every elements
v € Ly(2 x (0,27)) has a Fourier expansion

v = Zvjk(bjk
jk
with Y |vk]? < oo and v, =< v, ®j; >. Let us define a subspace H of
Ly(2 x (0,27)) as
H={ueLy(Qx(0,2m)] Y (;*+A\)2ud, <o} (21)

ik

O (2, 1) = by j=0,41,42..., k=123, ...

Then this is a complete normed space with a norm
. 1941
lull = DG+ A0)7ul)>.
jk
A weak solution of problem (1.2) is of the form u = ) u;;,®;;, satisfying
S lugl? (52 + A2)2 < oo, which implies u € H. Thus we have that if u
is a weak solution of (1.2), then u; = Dyu = Zj i 17wk ®j, belong to H
and —Au = ) A\u;r P, belong to H.
We have some properties on || - || and D, — A. Since |j 4+ A\x| — oo for
all j, k, we have that:

LEMMA 2.1, (i) [|lull = [Ju(z, 0)[| = [[u(z, 0)|[Lo)-
(ii) |Jul| £o(@) = 0 if and only if ||u|| = 0.
(iii) uy — Au € H implies u € H.
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Proof. (i) Let u =}, ; uj®j;. Then

P = SRR

D A (.0) = [u(z.0)|?

> . 0) = flu(, )]l

(ii) Let u =3, , uxPs.
lull =0 > (% + A2 —O@Zuﬂﬁo@ lully0) = 0.

jk

(iii) Let uy — Au= f € H. Then f can be expressed by
f:ijkq)jk, Z(jz—l—)\%)%szk < 00

ik

v

v

Then we have

A
(RN L oY fi<os

2
T 72+

for some C > 0. 0

LEMMA 2.2. For any real a # X, the operator (Dy — A — )7 ! is

linear, self-adjoint, and a compact operator from Ly(€2 x (0,27)) to H
with the operator norm ﬁ, where A, is an eigenvalue of —A closest
to a.

Proof. Suppose that a # \g. Since Ay — +00, the number of elements
in the set {\;| \x < a} is finite, where \; is an eigenvalue of —A. Let

1]1

h = Zj khjkq)jlm where (I)Jk (bk\/— Then
1
( t OZ) ]Zklj+>\k_a]k jk
Hence
1
[(Di=A—a)'h|* =) - (77 +(w—a)?) )2h2, < > COhj < o0
A (A —a)? =

for some C' > 0. Thus (D; — A — a)~! is a bounded operator from
Lo(2 % (0,27)) to H and also send bounded subset of Ly(€2 x (0,27)) to
a compact subset of H, hence (D; —A —«)~! is a compact operator. [



Nontrivial periodic solution for the superquadratic parabolic problem 57

From Lemma 2.2 we obtain the following lemma:

LEMMA 2.3. Let F(x,t,u) € Ly(Q2 x (0,27)). Then all the solutions
of

ur — Au = F(z,t,u) in Ly(Q2 x (0,2m))
belong to H.
From now on we restrict ourselves to the real Ls-space and observe
that this is an invariant space for R. So Ly(€2 x (0,27)) denotes the

real square-integrable functions on € x (0,27) and H the subspace of
Ly (€2 x (0,2m)) satisfying (2.1). The functions

Do = V%mm,

C

1 .
*= r cos jtor(r),

. .
= ﬁSlnjt¢k(x) 5, k=1,2,3,....

form a real orthonormal basis in the real space Lo(£2 x (0,27)), and the
Fourier coefficients of a real valued function u € Ly (2% (0, 27)) are given
by uor =< u, Pop >, ufy, =< u, <I>§fk >, uj =< u,@jk >. We also have
that

Ujk —V2Re Wik, ujk = —2Im uji, for j,k=1,2,3,...,
\/§ujk = ujk — z'ujfk, \/§u,j7k = u;’k + iuj-k, Ujp = U—j f-
The function w = Au = (D; — A)~'u is given, in terms of its Fourier
coefficients, by
V2
ws, — s, = V2w = ———wi(ij + M)
Jk ik Jk ]2 _’_)\% Jk( J k)

(2.2) can be expressed by matrix notation

Wik — A, Ui A :L —Ae J
(w]"”k) ]k<ujk>’ 7k P2+ -7 M)

We also have that

(wi)? + (w3)? = |wl* + Jw_jk|* = (Juje* + Ju—jnl?).  (2.2)

PN
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Note that, for u € H,

/Q (Dyi— Aw)udadt — /Q S AU, 08, st B dadt = [Jul®. (2.3)
Let us define the functional on H,

2 1 1
I(u) = / /[§Dtu U+ §\Vu|2 — F(z,t,u)]dtdz. (2.4)
0 Q

We note that I is well defined. By the following Lemma 2.4, the solutions
of (1.2) coincide with the critical points of I(u).

LEMMA 2.4. The functional I(u) is continuous and Fréchet differen-
tiable in H with Fréchet derivative

DI(u)v = /O27r /Q[Dtu — Au — F,(z,t,u)u]dzdt. (2.5)

Proof. Let u € H. To prove the continuity of I(u) we consider
[ (u+v) = I(u)|

1 2
- |§/0

[(Dyu + Dyv)(u+v) + (—Au — Av)(u + v)|dzdt
F(z,t,u+v)dzdt — %/0 ’ /Q[(Dtu)u + (—Auw)uldzdt
F(x,t,u)dzdt|

[(Dyu — Au)v + (D — Av)u + (Dyv — Av)v|dxdt

S— T 5 5—

[F(z,t,u+v) — F(x,t,u)|dxdt|.

|
s~
S—

Let u = Z(%ujkq)jk + %Uj'k@jk)a v o= Z(%U]qu);k + %Ujkcbj'k)a J =
0,1,..., k=1,2,.... Then we have
2w
1 - (& (& S S

[ [ (D= sl = 51306 + M) g+ )] < ol
2 1

[ (D= sl = 51506 + M) i + )] < ol
2m

1 N C C S S
| Q(Dtv — Av)ol = 2| 3 (5 + M) (et + w5l < lull - ol
0
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On the other hand, it follows from the differentiability of F' that
|F(.Z‘, t,U + U) - F(‘T?t7 U>| - O(”U“)

Thus it follows that I(u) is continuous at u. To prove the Fréchet
differentiability at v € H, with (2.5), of I(u) we consider

1I(u+v) — I(u) — DI(u)v]

2
= \/ /—v Dy — Av)dzxdt
2T
- / /[F(m,t,u +v) — F(z,t,u) — Fu(x, t,u)v]dedt
o Ja

1
< Sllel + ool

since F' is differentiable at v € H. It follows that [(u) is Fréchet
differentiable at v € H. O

By (F1) and (F3), we obtain the lower bound for F(z,t,u) in the
term of |ul|t.

LEMMA 2.5. Assume that F' satisfies the conditions (F1) and (F3).
Then there exist ag, by € R with ag > 0 such that

F(x,t,r) > ao(|r*) — bo, Va,t,r. (2.6)

Proof. Let r be such that |r| > R. Let us set (&) = F(x,t,&r) for
¢ > 1. Then

(p(f)/ = T‘Fr(l‘, t 67“) > 90(5)

M=

Multiplying by £+, we get

(£7¢(¢)) 20,
hence ¢(§) > p(1)&* for € > 1. Thus we have

Ly (e

F(z,t,r) > F(z,t T
r

("

where ¢o = inf{F(x,t,r)| (z,t) € Q, |r| = R}. O

) ao(|r|*) — bo, for some ag > 0, by,

= |
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LEMMA 2.6. Assume that I satisfies the conditions (F'1), (F2) and
(F3). Then
(i) fQ F(z,t,0)dzdt =0, fQ F(z,t,u)dzdt > 0 if u # 0,
grad( [, F'(z,t,u))dzdt = o(||ul|) as u — 0;
(ii) there exist ag > 0, pu > 2 and by € R such that

/ F(x,t,u)dzdt > ao||ullf, —b1  Yu € H;
Q

(iii) u — grad(fQ F(z,t,u))dzdt is a compact map;
(iv) if [ uFu(z,t,u)dzdt —2 [, F(z,t,u)dzdt = 0,
then grad( [, F(z,t, u)dzdt) = 0;

fQ Un Fy (z,tuy ) dedt—2 fQ F(z,tun)dzdt

(v) if [Jun|| — +o00 and o — 0,
then there exist (up, ), and w € H such that
rad( |, F(x,t,u,)dxdt
& <fQ ( ) )—>wand hn L,

[[en, | [[en, |

Proof. (i) (i) follows from (F1) and (F2), since 1 < v.
(ii) By Lemma 2.5, for v € H,

/ Fla,t, u)dedt > aollull’ — b,
Q

where by € R. Thus (ii) holds.

(iii) (iii) is easily obtained with standard arguments.

(iv) (iv) is implied by (F3) and the fact that F(z,¢,u) > 0 for u # 0.
(v) By Lemma 2.5 and (F3), for u,

/ uFy(z,t,u)dxdt — 2/ F(z,t,u)dzdt >
Q Q

(0 =2) [ Fla,tu)dadt > (n= Dlaallulls ~ b)
Q
By (F2),

o S |l o

Jerad( | Pt u)dodo)] < €1t )]
Q
for suitable constants C’, C". To get the conclusion it suffices to estimate
v 2
[ in terms of L
[lull T2 flll

Hoélder inequality. If 1 < 2°'v, by the standard interpolation arguments,

. If 4 > 2¥v, then this is a consequence of
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it follows that H%HLQ*/ < C’(”qﬁ%“)%“uHﬁ, where a is such that & +

Lo - L (a>0and 3 =(1-ay—-1- % Notice that, the

2% 2"y
assumptions on p and v imply that v < 2* —1— (2* — u)(1 — ). Thus
we prove (V). O

LEMMA 2.7. Assume that F satisfies the conditions (F'1) — (F4).
vls)

Then there exist ¢, 1 : [0, +00] — R continuous and such that — 0
as s — 0, p(s) > 0if s >0,
(i) ||grad fQ F(x,t,u)dzdt||* < w(fQ F(z,t,u)dzdt), Yu € H,

(ii) fQ[uFu(x,t, w)]dxdt — 2 fQ F(z,t,u)dzdt > ¢(u), Yu € H.
Proof. (i) By (F4), for all u € H,

lgrad( | F(z,t,u)dzdt)] < [[Fu(z,t, )]

2
Q

IA

CLIF (@, t,u)’|| v
Col| F(,t,u)’ || oo
Cs| F(w,t,u)’l],
Cal| F(,t, u)l[3,

6’5(/ F(z,t, u)dmdt)é,
Q

IA

2+

IN

1
B

IN

where C, Oy, C3, Cy and Cs are constants. Since 6 > %, (i) follows.
(i) By (F3),

/ Fu(z,t,u)dzxdt — 2/ F(x,t,u)dzdt >
Q Q

(1—2) /Q F(o,t,uw)dadt > (5 — 2)(aollulll, — by).

Thus (ii) follows. O

3. Linking geometry

Now we are looking for the nontrivial periodic weak solution of 1.2).
By Lemma 2.4, the weak solutions of (1.2) coincide with the critical
points of the corresponding functional I(u). To find the critical points
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of I(u) we shall use the variational linking theorem. Now we recall the
variational linking theorem (cf. [9]).

LEMMA 3.1. (Variational Linking Theorem)
Let H be a real Hilbert space with H = H, ® H, and Hy, = H{-. We
suppose that
(I1) I € C'(H, R), satisfies (P.S.)* condition, and
(I12) I(u) = 1(Lu,u)+ bu, where Lu = Ly Piu+ LyPyu and L, : H; — H;
is bounded and selfadjoint, i = 1, 2,
(I3) V' is compact, and
(I4) there exists a subspace H C H and sets S ¢ H, T C H and
constants « > w such that,

(i) S C Hy and I|s > «,

(ii) T is bounded and I|sr < w,

(iii) S and OT link.
Then I possesses a critical value ¢ > «.

Let H" = span{®$,, ®5.| j > 1, k > 1}, H~ = span{®5,, ®3,| j <
—1, k> 1} and Ho, = span{®q| £ > 1}. Then H*, H~ and Hyy are
mutually orthogonal and H = H* & Hy, & H~. Let

Hnn - Span{@;lm (I)jk| -n Sj S n, 1 S k S n}a
H,, =span{®}, &% | —n <j< -1, 1<k <n}
Then (H,,)n is a sequence of closed subspaces of H with the conditions:

H,,=H, & Hy,®H,  where H' C H", H_, C H foralln, (3.1)

(H and H_ are subspaces of H),dim H,,, < +oo,

H,, C Hyi1 ni1, Unen Hyp is dense in H. (3.2)

Let Py,, be the orthogonal projection from H onto H,,.
Let us set

H,, = span{®f;,, ®% | j € Z, 1 <k <m}.
Then
Hy = UjezHjm, H =UpenHy,.

Let us prove that the functional I satisfies the linking geometry.
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LEMMA 3.2. Assume that F' satisfies the conditions (F1) — (F4),
(i) there exist a small number p,, > 0 and a small ball B, C H- with
radius p,, such that if u € 0B, , then

Qy, = inf I(u) > 0,
(i) there are an e € H: N B,., Ryn > pm and a large ball Bg, with
radius R,,, > 0 such that if
Wy, = (Bg,, N Hy) @ {re|0<r < Ry},

then
sup I(u) <0.
u€oOWy,

Proof. (i) By (i) of Lemma 2.6, we have that, for u € H:,

1
I(u) = = / (D — Au)dxdt — / F(z,t,u)dxdt
2Jq Q
1 2
2 Amet||ull” = O([ul]).

Then there exists a small number p,, > 0 and a small ball B, C H
with radius p,, such that if v € 9B,,,, then inf I(u) > 0. Thus the
assertion (1) hold.

(ii) We note that

if e H,, then / (D — Au)dedt < Ml (33)
Q
if we€ HE, then /(Dtu — Au)dxdt > Ay ||u]|2,0)- (3.4)
Q

Let B, be a ball in (i). Let us choose an element e € H;: N B,,, with
le]| = 1. Let us choose u # 0 € H,, @ {re| r > 0}. By Lemma 2.5, we
have that )
1
I(u) < 5)\mHuH%2(Q) + 57"2 — agllullf. + by

for some ag > 0 and b;. Since yu > 2, there exists R,,, > 0 and a ball Bg,,
with radius R,, such that if u € (Bg, N Hy,) ® {re|] 0 <r < R,,}, then
sup I(u) < 0. So the assertion (ii) hold. So the lemma is proved. O

We shall prove that the functional I satisfies the (P.S.): condition
with respect to (Hyy), for any ¢ € R.
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LEMMA 3.3. Assume that F satisfies the conditions (F'1)—(F4). Then
the functional I satisfies the (P.S.)} condition with respect to (Hp,),, for
any real number c.

Proof. Let ¢ € R and (h,) be a sequence in N such that h,, — +oo,
(un)n be a sequence in Hy, p, such that

I(un) — ¢, Py, , VI(up) — 0.

We claim that (u,), is bounded By contradiction we suppose that
||un|] — 400 and set i, = Then

IIUnII

I{un)

[[n|
Jo VE(,tup) - updwdt — 2 [, F(2,t,u,)dwdt

[

<Pthhn Vi(up),tin) = (VI(uy), i) =2

— 0

Hence
fQ VF(z,t,uy,) - updrdt — ZfQ x,t, uy, )dxdt

[[un

_)O

By (v) of Lemma 2.6,
grad fQ F(z,t,u,)dzdt

[

converges

and u,, — 0. We get

Py, evad( [, F(,t, uy,)dzdt)
- [t |

so (Pg, , (Dy — A)uy) converges. Since (i), is bounded and (D, —
A)~1is a compact mapping, up to subsequence, (), has a limit. Since
u, — 0, we get u, — 0, which is a contradiction to the fact that
|ltnl|p = 1. Thus (uy), is bounded. We can now suppose that u, — u
for some v € H. Since the mapping u +— grad(fQ F(x,t,u)dzdt) is a

— 0

compact mapping, grad(fQ F(z,t,u,)dxdt) — grad(fQ F(z,t,u)dzxdt).
Thus (Pg, , (D¢ — A)uy), converges. Since (Dy — A)~! is a compact
operator and (u,), is bounded, we deduce that, up to a subsequence,
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(un)n converges to some u strongly with VI(u) = lim VI(u,) = 0. Thus
we prove the lemma. O

4. Proof of theorem 1.1

Assume that the nonlinear term F satisfies (F1), (F2), (F3) and (F4).
We note that 1(0,0) = 0 and H = H,, ® H:-. By (iii) of Lemma 2.6,
U — grad(fQ F(x,t,u)dxdt) is a compact mapping. By Lemma 3.2,
there exist a small number p,, > 0 and a small ball B, C H,, with
radius p,, such that if v € 0B,,,, then o, = inf I(u) > 0, and there
isan e € Hnﬁ NB, , Ry, > pn >0 and a large ball Bg, with radius

Pm
R,, > 0 such that if

Wy = (Bg,, N Hy,) ® {re|] 0 <r < R},

then
sup I(u) <0.
u€OWy,
Let us set (3, = supy, I. We note that 3, < +oo. We note that
0B, and OW,, link. Moreover, by Lemma 3.3, I,,, = I|g,,,, satisfies the
(P.S.)! condition for any ¢ € R. Thus by Lemma 3.1 (Linking Theorem),
there exists a critical point wu,, for I, with

am < inf T <I(up) < sup I < B
pmmHmm Wi NHpmm

Since I,,, satisfies the (P.S.): condition, we obtain that, up to a subse-

quence, u,, — u, with u a critical point for I such that a,, < I(u) < .
Hence u # (0,0). Thus system (1.2) has a nontrivial solution. Thus
Theorem 1.1 is proved.
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