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NONTRIVIAL PERIODIC SOLUTION FOR THE

SUPERQUADRATIC PARABOLIC PROBLEM

Tacksun Jung and Q-Heung Choi∗

Abstract. We show the existence of a nontrivial periodic solution
for the superquadratic parabolic equation with Dirichlet boundary
condition and periodic condition with a superquadratic nonlinear
term at infinity which have continuous derivatives. We use the crit-
ical point theory on the real Hilbert space L2(Ω× (0, 2π)). We also
use the variational linking theorem which is a generalization of the
mountain pass theorem.

1. Introduction

Let Ω be a bounded, connected open subset of Rn with smooth bound-
ary ∂Ω. In this paper we consider the multiplicity of the solutions of the
following parabolic boundary value problem

Dtu = ∆u + Fu(x, t, u) in Ω×R, (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t + T ), in Ω×R,

where the period T is given and F : Ω×R×R → R is a superquadratic
function at infinity which has a continuous derivative Fu(x, t, u) for al-
most any x ∈ Ω. Moreover we assume that F satisfies the following
conditions:
(F1) F (x, t, 0) = Fx(x, t, 0) = Ft(x, t, 0) = Fxx(x, t, 0) = Ftt(x, t, 0) =
Fxt(x, t, 0) = 0, F (x, t, r) > 0 if r 6= 0, inf (x,t)∈Ω×R

|r|=R
F (x, t, r) > 0;

(F2) |Fr(x, t, r)| ≤ c(|r|ν) ∀x, t, r;
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(F3) rFr(x, t, r) ≥ µF (x, t, r) ∀x, t, r;
(F4) |Fr(x, t, r)| ≤ dF (x, t, r)δ

where c ≥ 0, d > 0, R > 0, µ ∈]2, 2∗[, ν ≤ 2∗ − 1− (2∗− µ)(1− 2∗
′

2∗ ) and
1
2

< δ ≤ 1
2∗′ .

In this paper we consider the case T = 2π. That is

Dtu = ∆u + Fu(x, t, u) in Ω×R, (1.2)

u(x, t) = 0, x ∈ ∂Ω, t ∈ R,

u(x, t) = u(x, t + 2π), in Ω×R,

The physical phenomena for this kind of parabolic boundary value prob-
lem occur in the heat flow dynamics with superquadratic nonlinearity.
We observe that 0 < λ1 < λ2 ≤ · · · ≤ λk → ∞ are the eigenvalues of
the eigenvalue problem −∆u = λu in Ω, u|∂Ω = 0 and φk is the eigen-
function corresponding to the eigenvalue λk for each k. We note that
the first eigenfunction φ1(x) > 0.

The purpose of this paper is to find the number of weak solutions of
(1.2) under the assumptions (F1)− (F4) on the nonlinear term F .

The steady-state case of (1.1) is the elliptic problem

∆w + F (x,w) = 0 in Ω, (1.3)

w = 0 on ∂Ω.

For the multiplicity results of (1.3) the readers refer to [9].
The main result is the following:

Theorem 1.1. Assume that F satisfies the conditions (F1) − (F4).
Then (1.2) has a nontrivial periodic solution.

In section 2 we introduce the Hilbert space H whose elements are ex-
pressed by the square integrable Fourier series expansions on Ω×(0, 2π),
consider the parabolic problem (1.2) on H and obtain some results on
the operator Dt − ∆ and F . In section 3 we introduce the variational
linking theorem which is a crucial role for the proof of Theorem 1.1
and show that I satisfies the linking geometry. In section 4 we prove
Theorem 1.1.
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2. Parabolic problem on H

Let Q be the space Ω× (0, 2π). The space L2(Ω× (0, 2π)) is a Hilbert
space equipped with the usual inner product

< v,w >=

∫ 2π

0

∫

Ω

v(x, t)w̄(x, t)dxdt

and a norm

‖v‖L2(Q) =
√

< v, v >.

We shall work first in the complex space L2(Ω× (0, 2π)) but shall later
switch to the real space. The functions

Φjk(x, t) = φk
eijt

√
2π

, j = 0,±1,±2, . . . , k = 1, 2, 3, . . .

form a complete orthonormal basis in L2(Ω × (0, 2π)). Every elements
v ∈ L2(Ω× (0, 2π)) has a Fourier expansion

v =
∑

jk

vjkΦjk

with
∑ |vjk|2 < ∞ and vjk =< v, Φjk >. Let us define a subspace H of

L2(Ω× (0, 2π)) as

H = {u ∈ L2(Ω× (0, 2π))|
∑

jk

(j2 + λ2
k)

1
2 u2

jk < ∞}. (2.1)

Then this is a complete normed space with a norm

‖u‖ = [
∑

jk

(j2 + λ2
k)

1
2 u2

jk]
1
2 .

A weak solution of problem (1.2) is of the form u =
∑

ujkΦjk satisfying∑ |ujk|2(j2 + λ2
k)

1
2 < ∞, which implies u ∈ H. Thus we have that if u

is a weak solution of (1.2), then ut = Dtu =
∑

j k ijujkΦjk belong to H

and −∆u =
∑

λkujkΦjk belong to H.
We have some properties on ‖ · ‖ and Dt−∆. Since |j + λk| → ∞ for

all j, k, we have that:

Lemma 2.1. (i) ‖u‖ ≥ ‖u(x, 0)‖ ≥ ‖u(x, 0)‖L2(Ω).
(ii) ‖u‖L2(Q) = 0 if and only if ‖u‖ = 0.
(iii) ut −∆u ∈ H implies u ∈ H.
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Proof. (i) Let u =
∑

j k ujkΦjk. Then

‖u‖2 =
∑

(j2 + λ2
k)

1
2 u2

jk

≥
∑

λ2
ku

2
jk(x.0) = ‖u(x.0)‖2

≥
∑

u2
jk(x, 0) = ‖u(x, 0)‖2

L2(Ω).

(ii) Let u =
∑

j k ujkΦjk.

‖u‖ = 0 ⇔
∑

j k

(j2 + λ2
k)

1
2 u2

jk = 0 ⇔
∑

j k

u2
jk = 0 ⇔ ‖u‖L2(Q) = 0.

(iii) Let ut −∆u = f ∈ H. Then f can be expressed by

f =
∑

fjkΦjk,
∑

j k

(j2 + λ2
k)

1
2 f 2

jk < ∞

Then we have

‖(Dt −∆)−1f‖2 =
∑

j k

(j2 + λ2
k)

1
2

j2 + λ2
k

f 2
jk < C

∑

j k

f 2
jk < ∞

for some C > 0.

Lemma 2.2. For any real α 6= λk, the operator (Dt − ∆ − α)−1 is
linear, self-adjoint, and a compact operator from L2(Ω × (0, 2π)) to H
with the operator norm 1

|α−λk| , where λk is an eigenvalue of −∆ closest
to α.

Proof. Suppose that α 6= λk. Since λk → +∞, the number of elements
in the set {λk| λk < α} is finite, where λk is an eigenvalue of −∆. Let

h =
∑

j k hjkΦjk, where Φjk = φk
eijt√
2π

. Then

(Dt −∆− α)−1h =
∑

j k

1

ij + λk − α
hjkΦjk.

Hence

‖(Dt−∆−α)−1h‖2 =
∑

j k

1

j2 + (λk − α)2
(j2+(λk−α)2)

1
2 h2

jk ≤
∑

j k

Ch2
jk < ∞

for some C > 0. Thus (Dt − ∆ − α)−1 is a bounded operator from
L2(Ω× (0, 2π)) to H and also send bounded subset of L2(Ω× (0, 2π)) to
a compact subset of H, hence (Dt−∆−α)−1 is a compact operator.
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From Lemma 2.2 we obtain the following lemma:

Lemma 2.3. Let F (x, t, u) ∈ L2(Ω × (0, 2π)). Then all the solutions
of

ut −∆u = F (x, t, u) in L2(Ω× (0, 2π))

belong to H.

From now on we restrict ourselves to the real L2-space and observe
that this is an invariant space for R. So L2(Ω × (0, 2π)) denotes the
real square-integrable functions on Ω × (0, 2π) and H the subspace of
L2(Ω× (0, 2π)) satisfying (2.1). The functions

Φ0k =
1√
2π

φk(x),

Φc
jk =

1√
π

cos jtφk(x),

Φs
jk =

1√
π

sin jtφk(x) j, k = 1, 2, 3, . . . .

form a real orthonormal basis in the real space L2(Ω× (0, 2π)), and the
Fourier coefficients of a real valued function u ∈ L2(Ω×(0, 2π)) are given
by u0k =< u, Φ0k >, uc

jk =< u, Φc
jk >, us

jk =< u, Φs
jk >. We also have

that

uc
jk =

√
2Re ujk, us

jk = −
√

2Im ujk, for j, k = 1, 2, 3, . . . ,

√
2ujk = uc

jk − ius
jk,

√
2u−j,k = uc

jk + ius
jk, ūjk = u−j,k.

The function w = Au = (Dt − ∆)−1u is given, in terms of its Fourier
coefficients, by

wc
jk − iws

jk =
√

2wjk =

√
2

j2 + λ2
k

ujk(ij + λk).

(2.2) can be expressed by matrix notation
(

wc
jk

ws
jk

)
= Ajk

(
uc

jk

us
jk

)
, Ajk =

1

j2 + λ2
k

( −λk j
−j −λk

)
.

We also have that

(wc
jk)

2 + (ws
jk)

2 = |wjk|2 + |w−j,k|2 =
1

j2 + λ2
k

(|ujk|2 + |u−j,k|2). (2.2)
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Note that, for u ∈ H,∫

Q

(Dtu−∆u)udxdt =

∫

Q

∑
mn

λn(uc2

mnΦc2

mn+us2

mnΦs2

mn)dxdt = ‖u‖2. (2.3)

Let us define the functional on H,

I(u) =

∫ 2π

0

∫

Ω

[
1

2
Dtu · u +

1

2
|∇u|2 − F (x, t, u)]dtdx. (2.4)

We note that I is well defined. By the following Lemma 2.4, the solutions
of (1.2) coincide with the critical points of I(u).

Lemma 2.4. The functional I(u) is continuous and Fréchet differen-
tiable in H with Fréchet derivative

DI(u)v =

∫ 2π

0

∫

Ω

[Dtu−∆u− Fu(x, t, u)u]dxdt. (2.5)

Proof. Let u ∈ H. To prove the continuity of I(u) we consider

|I(u + v)− I(u)|

= |1
2

∫ 2π

0

∫

Ω

[(Dtu + Dtv)(u + v) + (−∆u−∆v)(u + v)]dxdt

−
∫ 2π

0

∫

Ω

F (x, t, u + v)dxdt− 1

2

∫ 2π

0

∫

Ω

[(Dtu)u + (−∆u)u]dxdt

+

∫ 2π

0

∫

Ω

F (x, t, u)dxdt|

= |1
2

∫ 2π

0

∫

Ω

[(Dtu−∆u)v + (Dtv −∆v)u + (Dtv −∆v)v]dxdt

−
∫ 2π

0

∫

Ω

[F (x, t, u + v)− F (x, t, u)]dxdt|.

Let u =
∑

(1
2
uc

jkΦ
c
jk + 1

2
us

jkΦ
s
jk), v =

∑
(1

2
vc

jkΦ
c
jk + 1

2
vs

jkΦ
s
jk), j =

0, 1, . . ., k = 1, 2, . . .. Then we have

|
∫ 2π

0

∫

Ω

(Dtu−∆u)v| = 1

2
|
∑

(j + λk)(u
c
jkv

c
jk + us

jkv
s
jk)| ≤ ‖u‖ · ‖v‖,

|
∫ 2π

0

∫

Ω

(Dtu−∆u)v| = 1

2
|
∑

(j + λk)(u
c
jkv

c
jk + us

jkv
s
jk)| ≤ ‖u‖ · ‖v‖,

|
∫ 2π

0

∫

Ω

(Dtv −∆v)v| = 1

2
|
∑

(j + λk)(u
c
jkv

c
jk + us

jkv
s
jk)| ≤ ‖u‖ · ‖v‖.
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On the other hand, it follows from the differentiability of F that

|F (x, t, u + v)− F (x, t, u)| = O(‖v‖).
Thus it follows that I(u) is continuous at u. To prove the Fréchet
differentiability at u ∈ H, with (2.5), of I(u) we consider

|I(u + v)− I(u)−DI(u)v|

= |
∫ 2π

0

∫

Ω

1

2
v(Dtv −∆v)dxdt

−
∫ 2π

0

∫

Ω

[F (x, t, u + v)− F (x, t, u)− Fu(x, t, u)v]dxdt

≤ 1

2
‖v‖2 + o(‖v‖),

since F is differentiable at u ∈ H. It follows that I(u) is Fréchet
differentiable at u ∈ H.

By (F1) and (F3), we obtain the lower bound for F (x, t, u) in the
term of |u|µ.

Lemma 2.5. Assume that F satisfies the conditions (F1) and (F3).
Then there exist a0, b0 ∈ R with a0 > 0 such that

F (x, t, r) ≥ a0(|r|µ)− b0, ∀x, t, r. (2.6)

Proof. Let r be such that |r| ≥ R. Let us set ϕ(ξ) = F (x, t, ξr) for
ξ ≥ 1. Then

ϕ(ξ)′ = rFr(x, t, ξr) ≥ µ

ξ
ϕ(ξ).

Multiplying by ξ−µ, we get

(ξ−µϕ(ξ))′ ≥ 0,

hence ϕ(ξ) ≥ ϕ(1)ξµ for ξ ≥ 1. Thus we have

F (x, t, r) ≥ F
(
x, t,

Rr

|r|
)( |r|

R

)µ

≥ c0

( |r|
R

)µ ≥ a0(|r|µ)− b0, for some a0 > 0, b0,

where c0 = inf{F (x, t, r)| (x, t) ∈ Q, |r| = R}.
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Lemma 2.6. Assume that F satisfies the conditions (F1), (F2) and
(F3). Then
(i)

∫
Q

F (x, t, 0)dxdt = 0,
∫

Q
F (x, t, u)dxdt > 0 if u 6= 0,

grad(
∫

Q
F (x, t, u))dxdt = o(‖u‖) as u → 0;

(ii) there exist a0 > 0, µ > 2 and b1 ∈ R such that∫

Q

F (x, t, u)dxdt ≥ a0‖u‖µ
Lµ − b1 ∀u ∈ H;

(iii) u 7→ grad(
∫

Q
F (x, t, u))dxdt is a compact map;

(iv) if
∫

Q
uFu(x, t, u)dxdt− 2

∫
Q

F (x, t, u)dxdt = 0,

then grad(
∫

Q
F (x, t, u)dxdt) = 0;

(v) if ‖un‖ → +∞ and
∫

Q unFu(x,t,un)dxdt−2
∫

Q F (x,t,un)dxdt

‖un‖ → 0,

then there exist (uhn)n and w ∈ H such that

grad(
∫

Q
F (x, t, un)dxdt)

‖uhn‖
→ w and

uhn

‖uhn‖
⇀ 0.

Proof. (i) (i) follows from (F1) and (F2), since 1 < ν.
(ii) By Lemma 2.5, for u ∈ H,∫

Q

F (x, t, u)dxdt ≥ a0‖u‖µ
Lµ − b1,

where b1 ∈ R. Thus (ii) holds.
(iii) (iii) is easily obtained with standard arguments.
(iv) (iv) is implied by (F3) and the fact that F (x, t, u) > 0 for u 6= 0.
(v) By Lemma 2.5 and (F3), for u,∫

Q

uFu(x, t, u)dxdt− 2

∫

Q

F (x, t, u)dxdt ≥

(µ− 2)

∫

Q

F (x, t, u)dxdt ≥ (µ− 2)(a0‖u‖µ
Lµ − b1).

By (F2),

‖grad(

∫

Q

F (x, t, u)dxdt)‖ ≤ C ′‖Fu(x, t, u)‖
L2∗′ ≤ C ′′‖|u|ν‖

L2∗′ ,

for suitable constants C ′, C ′′. To get the conclusion it suffices to estimate

‖ |u|ν‖u‖‖L2∗′ in terms of
‖u‖µ

Lµ

‖u‖ . If µ ≥ 2∗
′
ν, then this is a consequence of

Hölder inequality. If µ < 2∗
′
ν, by the standard interpolation arguments,
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it follows that ‖ |u|ν‖u‖‖L2∗′ ≤ C
(‖u‖µ

Lµ

‖u‖
) να

µ ‖u‖β, where α is such that α
µ

+
1−α
2∗ = 1

2∗′ν (α > 0) and β = (1 − α)ν − 1 − να
µ

. Notice that, the

assumptions on µ and ν imply that ν ≤ 2∗− 1− (2∗−µ)(1− 2∗
′

2∗ ). Thus
we prove (v).

Lemma 2.7. Assume that F satisfies the conditions (F1) − (F4).

Then there exist ϕ, ψ : [0, +∞] → R continuous and such that ψ(s)
s
→ 0

as s → 0, ϕ(s) > 0 if s > 0,
(i) ‖grad

∫
Q

F (x, t, u)dxdt‖2 ≤ ψ(
∫

Q
F (x, t, u)dxdt), ∀u ∈ H,

(ii)
∫

Q
[uFu(x, t, u)]dxdt− 2

∫
Q

F (x, t, u)dxdt ≥ ϕ(u), ∀u ∈ H.

Proof. (i) By (F4), for all u ∈ H,

‖grad(

∫

Q

F (x, t, u)dxdt)‖ ≤ ‖Fu(x, t, u)‖
L2∗′

≤ C1‖F (x, t, u)δ‖
L2∗′

≤ C2‖F (x, t, u)δ‖
L2∗′ ‖L2∗′

≤ C3‖F (x, t, u)δ‖
L

1
δ

≤ C4‖F (x, t, u)‖δ
L1

= C5

( ∫

Q

F (x, t, u)dxdt
)δ

,

where C1, C2, C3, C4 and C5 are constants. Since δ > 1
2
, (i) follows.

(ii) By (F3),
∫

Q

Fu(x, t, u)dxdt− 2

∫

Q

F (x, t, u)dxdt ≥

(µ− 2)

∫

Q

F (x, t, u)dxdt ≥ (µ− 2)(a0‖u‖µ
Lµ − b1).

Thus (ii) follows.

3. Linking geometry

Now we are looking for the nontrivial periodic weak solution of 1.2).
By Lemma 2.4, the weak solutions of (1.2) coincide with the critical
points of the corresponding functional I(u). To find the critical points
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of I(u) we shall use the variational linking theorem. Now we recall the
variational linking theorem (cf. [9]).

Lemma 3.1. (Variational Linking Theorem)
Let H be a real Hilbert space with H = H1 ⊕ H2 and H2 = H⊥

1 . We
suppose that
(I1) I ∈ C1(H, R), satisfies (P.S.)∗ condition, and
(I2) I(u) = 1

2
(Lu, u)+ bu, where Lu = L1P1u+L2P2u and Li : Hi → Hi

is bounded and selfadjoint, i = 1, 2,
(I3) b′ is compact, and
(I4) there exists a subspace H̃ ⊂ H and sets S ⊂ H, T ⊂ H̃ and
constants α > w such that,

(i) S ⊂ H1 and I|S ≥ α,
(ii) T is bounded and I|∂T ≤ w,
(iii) S and ∂T link.

Then I possesses a critical value c ≥ α.

Let H+ = span{Φc
jk, Φ

s
jk| j ≥ 1, k ≥ 1}, H− = span{Φc

jk, Φ
s
jk| j ≤

−1, k ≥ 1} and H0k = span{Φ0k| k ≥ 1}. Then H+, H− and H0k are
mutually orthogonal and H = H+ ⊕H0k ⊕H−. Let

Hnn = span{Φc
jk, Φ

s
jk| − n ≤ j ≤ n, 1 ≤ k ≤ n},

H+
nn = span{Φc

jk, Φ
s
jk| 1 ≤ j ≤ n, 1 ≤ k ≤ n},

H−
nn = span{Φc

jk, Φ
s
jk| − n ≤ j ≤ −1, 1 ≤ k ≤ n}.

Then (Hnn)n is a sequence of closed subspaces of H with the conditions:

Hnn = H−
nn⊕H0n⊕H+

nn, where H+
nn ⊂ H+, H−

nn ⊂ H− for all n, (3.1)

(H+
nn and H−

nn are subspaces of H), dim Hnn < +∞,

Hnn ⊂ Hn+1 n+1,∪n∈NHnn is dense in H. (3.2)

Let PHnn be the orthogonal projection from H onto Hnn.
Let us set

Hm = span{Φc
jk, Φ

s
jk| j ∈ Z, 1 ≤ k ≤ m}.

Then

Hm = ∪j∈ZHjm, H = ∪m∈NHm.

Let us prove that the functional I satisfies the linking geometry.
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Lemma 3.2. Assume that F satisfies the conditions (F1)− (F4),
(i) there exist a small number ρm > 0 and a small ball Bρm ⊂ H⊥

m with
radius ρm such that if u ∈ ∂Bρm , then

αm = inf I(u) > 0,

(ii) there are an e ∈ H⊥
m ∩ Bρm , Rm > ρm and a large ball BRm with

radius Rm > 0 such that if

Wm = ( ¯BRm ∩Hm)⊕ {re| 0 < r < Rm},
then

sup
u∈∂Wm

I(u) ≤ 0.

Proof. (i) By (i) of Lemma 2.6, we have that, for u ∈ H⊥
m,

I(u) =
1

2

∫

Q

(Dtu−∆u)dxdt−
∫

Q

F (x, t, u)dxdt

≥ 1

2
λm+1‖u‖2 − 0(‖u‖).

Then there exists a small number ρm > 0 and a small ball Bρm ⊂ H⊥
m

with radius ρm such that if u ∈ ∂Bρm , then inf I(u) > 0. Thus the
assertion (1) hold.
(ii) We note that

if u ∈ Hm, then

∫

Q

(Dtu−∆u)dxdt ≤ λm‖u‖L2(Q), (3.3)

if u ∈ H⊥
m, then

∫

Q

(Dtu−∆u)dxdt ≥ λm+1‖u‖L2(Q). (3.4)

Let Bρm be a ball in (i). Let us choose an element e ∈ H⊥
m ∩ Bρm with

‖e‖ = 1. Let us choose u 6= 0 ∈ Hm ⊕ {re| r > 0}. By Lemma 2.5, we
have that

I(u) ≤ 1

2
λm‖u‖2

L2(Q) +
1

2
r2 − a0‖u‖µ

Lµ + b1

for some a0 > 0 and b1. Since µ > 2, there exists Rm > 0 and a ball BRm

with radius Rm such that if u ∈ ( ¯BRm ∩Hm)⊕ {re| 0 < r < Rm}, then
sup I(u) < 0. So the assertion (ii) hold. So the lemma is proved.

We shall prove that the functional I satisfies the (P.S.)∗c condition
with respect to (Hnn)n for any c ∈ R.
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Lemma 3.3. Assume that F satisfies the conditions (F1)−(F4). Then
the functional I satisfies the (P.S.)∗c condition with respect to (Hnn)n for
any real number c.

Proof. Let c ∈ R and (hn) be a sequence in N such that hn → +∞,
(un)n be a sequence in Hhnhn such that

I(un) → c, PHhnhn
∇I(un) → 0.

We claim that (un)n is bounded. By contradiction we suppose that
‖un‖ → +∞ and set ûn = un

‖un‖ . Then

〈PHhnhn
∇I(un), ûn〉 = 〈∇I(un), ûn〉 = 2

I(un)

‖un‖ −∫
Q
∇F (x, t, un) · undxdt− 2

∫
Q

F (x, t, un)dxdt

‖un‖ −→ 0.

Hence ∫
Q
∇F (x, t, un) · undxdt− 2

∫
Q

F (x, t, un)dxdt

‖un‖ −→ 0.

By (v) of Lemma 2.6,

grad
∫

Q
F (x, t, un)dxdt

‖un‖ converges

and ûn ⇀ 0. We get

PHhnhn
∇I(un)

‖un‖

= PHhnhn
(Dt −∆)ûn −

PHhnhn
grad(

∫
Q

F (x, t, un)dxdt)

‖un‖ −→ 0

so (PHhnhn
(Dt −∆)ûn) converges. Since (ûn)n is bounded and (Dt −

∆)−1 is a compact mapping, up to subsequence, (ûn)n has a limit. Since
ûn ⇀ 0, we get ûn → 0, which is a contradiction to the fact that
‖ûn‖E = 1. Thus (un)n is bounded. We can now suppose that un ⇀ u
for some u ∈ H. Since the mapping u 7→ grad(

∫
Q

F (x, t, u)dxdt) is a

compact mapping, grad(
∫

Q
F (x, t, un)dxdt) −→ grad(

∫
Q

F (x, t, u)dxdt).

Thus (PHhnhn
(Dt − ∆)un)n converges. Since (Dt − ∆)−1 is a compact

operator and (un)n is bounded, we deduce that, up to a subsequence,
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(un)n converges to some u strongly with ∇I(u) = lim∇I(un) = 0. Thus
we prove the lemma.

4. Proof of theorem 1.1

Assume that the nonlinear term F satisfies (F1), (F2), (F3) and (F4).
We note that I(0, 0) = 0 and H = Hm ⊕ H⊥

m. By (iii) of Lemma 2.6,
u 7→ grad(

∫
Q

F (x, t, u)dxdt) is a compact mapping. By Lemma 3.2,

there exist a small number ρm > 0 and a small ball Bρm ⊂ H⊥
m with

radius ρm such that if u ∈ ∂Bρm , then αm = inf I(u) > 0, and there
is an e ∈ H⊥

m ∩ Bρm , Rm > ρm > 0 and a large ball BRm with radius
Rm > 0 such that if

Wm = ( ¯BRm ∩Hm)⊕ {re| 0 < r < Rm},
then

sup
u∈∂Wm

I(u) ≤ 0.

Let us set βm = supWm
I. We note that βm < +∞. We note that

∂Bρm and ∂Wm link. Moreover, by Lemma 3.3, Im = I|Hmm satisfies the
(P.S.)∗c condition for any c ∈ R. Thus by Lemma 3.1 (Linking Theorem),
there exists a critical point um for Im with

αm ≤ inf
∂Bρm∩Hmm

I ≤ I(um) ≤ sup
Wm∩Hmm

I ≤ βm.

Since Im satisfies the (P.S.)∗c condition, we obtain that, up to a subse-
quence, um → u, with u a critical point for I such that αm ≤ I(u) ≤ βm.
Hence u 6= (0, 0). Thus system (1.2) has a nontrivial solution. Thus
Theorem 1.1 is proved.
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lems, Birkhäuser, (1993).

[2] Q. H. Choi and T. Jung, An application of a variational reduction method to
a nonlinear wave equation, J. Differential Equations, 117, 390-410 (1995).

[3] T. Jung and Q. H. Choi, An application of category theory to the nonlinear
wave equation with jumping nonlinearity, Honam Mathematical Journal, 26,
589-608 (December 2004).

[4] Q. H. Choi and T. Jung, Multiple periodic solutions of a semilinear wave
equation at double external resonances, Communications in Applied Analysis
3, No. 1, 73-84 (1999).



66 Tacksun Jung and Q-Heung Choi

[5] Q. H. Choi and T. Jung, Multiplicity results for nonlinear wave equations with
nonlinearities crossing eigenvalues, Hokkaido Mathematical Journal 24, 53-62
(1995).

[6] P. J. McKenna and W. Walter, Nonlinear oscillations in a suspension bridge,
Archive for Rational Mechanics and Analysis 98, 167-177 (1987).

[7] P. J. McKenna and W. Walter, On the multiplicity of the solution set of
some nonlinear boundary value problems, Nonlinear Analysis TMA 8, 893-907
(1984).

[8] J. T. Schwartz, Nonlinear functional analysis, Gordon and Breach, New York,
(1969).

[9] P. H. Rabinowitz, Minimax methods in critical point theory with applications
to differential equations, C.B.M.S. Reg. Conf. Ser. in Math. 6, American Math-
ematical Society, Providence, R1,(1986).

Department of Mathematics
Kunsan National University
Kunsan 573-701, Korea
E-mail : tsjung@kunsan.ac.kr

Department of Mathematics Education
Inha University
Incheon 402-751, Korea
E-mail : qheung@inha.ac.kr


