• Title/Summary/Keyword: Direct current magnetron sputtering

Search Result 59, Processing Time 0.04 seconds

A Comparative Study of Nanocrystalline TiAlN Coatings Fabricated by Direct Current and Inductively Coupled Plasma Assisted Magnetron Sputtering (DC 스퍼터법과 유도결합 플라즈마를 이용한 마그네트론 스퍼터링으로 제작된 나노결정질 TiAlN 코팅막의 물성 비교 연구)

  • Chun, Sung-Yong;Kim, Se-Chul
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.5
    • /
    • pp.375-379
    • /
    • 2014
  • Nanocrystalline TiAlN coatings were prepared by reactively sputtering TiAl metal target with $N_2$ gas. This was done using a magnetron sputtering system operated in DC and ICP (inductively coupled plasma) conditions at various power levels. The effect of ICP power (from 0 to 300 W) on the coating microstructure, corrosion and mechanical properties were systematically investigated using FE-SEM, AFM and nanoindentation. The results show that ICP power has a significant influence on coating microstructure and mechanical properties of TiAlN coatings. With increasing ICP power, the coating microstructure evolved from the columnar structure typical of DC sputtering processes to a highly dense one. Average grain size of TiAlN coatings decreased from 15.6 to 5.9 nm with increasing ICP power. The maximum nano-hardness (67.9 GPa) was obtained for the coatings deposited at 300 W of ICP power. The smoothest surface morphology (Ra roughness 5.1 nm) was obtained for the TiAlN coating sputtered at 300 W ICP power.

Characteristics of $CU(InGa)Se_2$Thin Film Solar Cells with Deposition Condition of Mo Electrode (몰리브덴 전극의 형성조건에 따른 $CU(InGa)Se_2$ 박막 태양전지의 특성)

  • Kim, Seok-Gi;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.12
    • /
    • pp.607-613
    • /
    • 2001
  • Molybdenum thin films were deposited on the soda lime glass(SLG) substrates by direct-current planar magnetron sputtering, with a sputtering power density of $4.44W/cm^2$. The working pressure was varied from 0.5 mtorr to 20 mtorr to gain a better understanding of the effect of sputtering pressure on the morphology and microstructure of the Mo film. Thin films of $CU(InGa)Se_2$ (CIGS) were deposited on the Mo-coated glass by three stage co-evaporation process. The highest efficiency device was obtained at the maximum value of the tensive stress. The morphology of Mo-coated films were examined by using scanning electron microscopy The film's microstructure, such as the preferred orientation, the full width at half-maximum(FWHM), and the residual intrinsic stress were examined by X-ray diffraction.

  • PDF

Surface Characteristics of Titanium/Hydroxyapatite Double Layered Coating on Orthopedic PEEK by Magnetron Sputtering System (마그네트론 스퍼터링 시스템을 이용한 정형외과용 PEEK의 타이타늄/하이드록시아파타이트 이중 코팅층의 표면 특성 분석)

  • Kang, Kwan-Su;Jung, Tae-Gon;Yang, Jae-Woong;Woo, Su-Heon;Park, Tea-Hyun;Jeong, Yong-Hoon
    • Journal of the Korean institute of surface engineering
    • /
    • v.51 no.3
    • /
    • pp.164-171
    • /
    • 2018
  • In this study, we have fabricated pure titanium (Ti)/hydroxyapatite (HA) double layer coating on medical grade PEEK from magnetron sputtering system, an investigation was performed whether the surface can be had more improve bio-active for orthopedi/dental applications than that of non-coated one. Pure Ti and HA coating layer were obtained by a radio-frequency and direct current power magnetron sputtering system. The microstructures surface, mechanical properties and wettability of the pure Ti/HA double layer deposited on the PEEK were analyzed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), nano-indentation, and contact angle test. According to the EDS and XRD results, the composition and crystal structure of pure Ti and HA coated surface were verified. The elastic modulus and hardness value were increased by pure Ti and HA coating, and the pure Ti/HA double layer coating surface has the highest value. The contact angle showed higher value for pure Ti/HA double layered coating specimens than that of non-coated (PEEK) surface.

Influence of Deposition Pressure on Structural and Optical Properties of SnS Thin Films Grown by RF Magnetron Sputtering (RF 마그네트론 스퍼터링법으로 성장 된 SnS 박막의 구조적 및 광학적 특성에 대한 증착 압력의 영향)

  • Son, Seung-Ik;Lee, Sang Woon;Son, Chang Sik;Hwang, Donghyun
    • Current Photovoltaic Research
    • /
    • v.8 no.1
    • /
    • pp.33-38
    • /
    • 2020
  • Single-phased SnS thin films have been prepared by RF magnetron sputtering at various deposition pressures. The effect of deposition pressure on the structural and optical properties of polycrystalline SnS thin films was studied using X-ray diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible-near infrared (UV-Vis-NIR) spectrophotometer. The XRD analysis revealed the orthorhombic structure of the SnS thin films oriented along the (111) plane direction. As the deposition pressure was increased from 5 mTorr to 15 mTorr, the intensity of the peak on the (111) plane increased, and the intensity decreased under the condition of 20 mTorr. The binding energy difference at the Sn 3d5/2 and S 2p3/2 core levels was about 324.5 eV, indicating that the SnS thin film was prepared as a pure Sn-S phase. The optical properties of the SnS thin films indicate the presence of direct allowed transitions with corresponding energy band gap in the rang 1.47-1.57 eV.

Effect of Post-deposition Rapid Thermal Annealing on the Electrical and Optical Properties of ZTO/Ag/ZTO Tri-layer Thin Films (급속열처리에 따른 ZTO/Ag/ZTO 박막의 전기적, 광학적 특성 개선 효과)

  • Song, Young-Hwan;Eom, Tae-Young;Heo, Sung-Bo;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.4
    • /
    • pp.151-155
    • /
    • 2017
  • The ZTO single layer and ZTO/Ag/ZTO tri-layer films were deposited on glass substrates by using the radio frequency (RF) and direct current (DC) magnetron sputtering and then rapid thermal annealed (RTA) in a low pressure condition for 10 minutes at 150 and $300^{\circ}C$, respectively. As deposited tri-layer films show the 81.7% of visible transmittance and $4.88{\times}10^{-5}{\Omega}cm$ of electrical resistivity, while the films annealed at $300^{\circ}C$ show the increased visible transmittance of 82.8%. The electrical resistivity also decreased as low as $3.64{\times}10^{-5}{\Omega}cm$. From the observed results, it is concluded that rapid thermal annealing (RTA) is an attractive post-deposition process to optimize the opto-elecrtical properties of ZTO/Ag/ZTO tri-layer films for the various display applications.

Effect of Ti Buffer Layer Thickness on the Electrical and Optical Properties of In2O3/Ti bi-layered Films (Ti 완충층 두께에 따른 In2O3/Ti 적층박막의 전기적, 광학적 특성 변화)

  • Moon, Hyun-Joo;Jeon, Jae-Hyun;Gong, Tae-Kyung;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.6
    • /
    • pp.296-299
    • /
    • 2015
  • $In_2O_3/Ti$ bi-layered films were deposited on glass substrate at room temperature with radio frequency (RF) and direct current (DC) magnetron sputtering to consider the effect of Ti buffer layer on the electrical and optical properties. In a comparison of figure of merit, $In_2O_3$ 90 nm/Ti 10 nm thin films show the higher opto-electrical performance of $3.0{\times}10^{-4}{\Omega}^{-1}$ than that of the $In_2O_3$ single layer films ($2.6{\times}10^{-4}{\Omega}^{-1}$). From the observed results, it is supposed that the $In_2O_3\;90nm/TiO_2$ 10 nm bi-layered films may be an alternative candidate for transparent electrode in a transparent thin film transistor device.

Influence of the Ag interlayer on the structural, optical, and electrical properties of ZTO/Ag/ ZTO films

  • Gong, Tae-Kyung;Moon, Hyun-Joo;Kim, Daeil
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.121-124
    • /
    • 2016
  • ZnSnO3 (ZTO)/Ag/ ZnSnO3 (ZTO) trilayer films were prepared on glass substrates by radio frequency (RF) and direct current (DC) magnetron sputtering. The electrical resistivity and optical transmittance of the films were investigated as a function of the Ag interlayer thickness. ZTO films with a 15 nm thick Ag interlayer show the highest average visible transmittance (83.2%) in the visible range. In this study, the highest figure of merit (2.1×10−2 Ω cm) is obtained with the ZTO 50 nm/Ag 15 nm/ZTO 50 nm films. The enhanced optical and electrical properties of ZTO films with a 15 nm thick Ag interlayer are attributed to the crystallization of the Ag interlayer, as supported by the distinct XRD pattern of the Ag (111) peaks. From the observed results, higher optical and electrical performance of the ZTO film with a 15 nm thick Ag interlayer seems to make a promising alternative to conventional transparent conductive ITO films.

Influence of Ag Nano-buffer Layer Thickness on the Opto-electrical Properties of AZO/Ag Transparent Electrode Films (Ag 나노완충층 두께에 따른 AZO/Ag 투명전극의 전기광학적 특성 연구)

  • Eom, Tae-Young;Song, Young-Hwan;Moon, Hyun-Joo;Kim, Dae-Hyun;Cho, Yun-Ju;Kim, Daeil
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.6
    • /
    • pp.272-276
    • /
    • 2016
  • Al doped ZnO (AZO) single layer and AZO/Ag bi-layered films were deposited on the glass substrates by radio frequency and direct current magnetron sputtering and then the effect of Ag buffer layer on the electrical and optical properties of the films was investigated. The thicknesses of AZO upper layer was kept as 100 nm, while Ag buffer layer was varied from 5 to 15 nm. The observed results mean that opto-electrical properties of the AZO films is influenced with Ag buffer layer and AZO film with 10 nm thick Ag buffer layer show the higher opto-electrical performance than that of the AZO single layer film prepared in this study.

Effect of oxalic acid solution to optimize texturing of the front layer of thin film sloar cells

  • Park, Hyeong-Sik;Jang, Gyeong-Su;Jo, Jae-Hyeon;An, Si-Hyeon;Jang, Ju-Yeon;Song, Gyu-Wan;Lee, Jun-Sin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.401-401
    • /
    • 2011
  • In this work, we deposited Al2O3doped ZnO (AZO) thin films by direct current (DC) magnetron sputtering method with a $40^{\circ}$ tilted target, for application in the front layer of thin film solar cell. Wet chemical etching behavior of AZO films was also investigated. In order to optimize textured AZO films, oxalic acid ($C_2H_2O_4$)has been used as wet etchant of AZO film. In this experiment we used 0.001% concentration of oxalic acid various etching time, that showed an anisotropy in etching texture of AZO films. Electrical resistivity, Hall mobility and carrier concentration measurements are performed by using the Hall measurement, that are $6{\times}10^{-4}{\Omega}cm$, $20{\sim}25cm^2/V-s$ and $4{\sim}6{\times}10^{20}$, respectively.

  • PDF