Browse > Article
http://dx.doi.org/10.4313/TEEM.2016.17.2.121

Influence of the Ag interlayer on the structural, optical, and electrical properties of ZTO/Ag/ ZTO films  

Gong, Tae-Kyung (School of Materials Science and Engineering, University of Ulsan)
Moon, Hyun-Joo (School of Materials Science and Engineering, University of Ulsan)
Kim, Daeil (School of Materials Science and Engineering, University of Ulsan)
Publication Information
Transactions on Electrical and Electronic Materials / v.17, no.2, 2016 , pp. 121-124 More about this Journal
Abstract
ZnSnO3 (ZTO)/Ag/ ZnSnO3 (ZTO) trilayer films were prepared on glass substrates by radio frequency (RF) and direct current (DC) magnetron sputtering. The electrical resistivity and optical transmittance of the films were investigated as a function of the Ag interlayer thickness. ZTO films with a 15 nm thick Ag interlayer show the highest average visible transmittance (83.2%) in the visible range. In this study, the highest figure of merit (2.1×10−2 Ω cm) is obtained with the ZTO 50 nm/Ag 15 nm/ZTO 50 nm films. The enhanced optical and electrical properties of ZTO films with a 15 nm thick Ag interlayer are attributed to the crystallization of the Ag interlayer, as supported by the distinct XRD pattern of the Ag (111) peaks. From the observed results, higher optical and electrical performance of the ZTO film with a 15 nm thick Ag interlayer seems to make a promising alternative to conventional transparent conductive ITO films.
Keywords
ZTO; Ag; RF magnetron sputtering; Figure of merit;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 J. H. Park, J. H. Chae, and D. Kim, J. Alloys Compd., 478, 330 (2009). [DOI: http://dx.doi.org/10.1016/j.jallcom.2008.11.065]   DOI
2 C. Guillén, and J. Herrero, Sol. Energy Mater. Sol. Cells, 92, 938 (2008). [DOI: http://dx.doi.org/10.1016/j.solmat.2008.02.038]   DOI
3 L. Gong, J. Lu, and Z. Ye, Thin Solid Films, 519, 3870 (2011). [DOI: http://dx.doi.org/10.1016/j.tsf.2011.01.396]   DOI
4 D. Kim, Vacuum, 81, 279 (2006). [DOI: http://dx.doi.org/10.1016/j.vacuum.2006.04.003]   DOI
5 K. Hirohata, Y. Nishi, N. Tsukamoto, N. Oka, Y. Sato, I. Yamamoto, and Y. Shigesato, Thin Solid Films, 518, 2980 (2010). [DOI: http://dx.doi.org/10.1016/j.tsf.2009.09.177]   DOI
6 Daeil Kim, Ceram. Int., 40, 1457 (2014). [DOI: http://dx.doi.org/10.1016/j.ceramint.2013.07.029]   DOI
7 T. Yamada, A. Miyake, H. Makino, N. Yamamoto, and T. Yamamoto, Thin Solid Films, 517, 3134 (2009). [DOI: http://dx.doi.org/10.1016/j.tsf.2008.11.081]   DOI
8 T. Y. Ma, and H. Choi, Appl. Surf. Sci., 286, 131 (2013). [DOI: http://dx.doi.org/10.1016/j.apsusc.2013.09.035]   DOI
9 R. Pandey, S. H. Cho, D. K. Hwang, and W. K. Choi, Curr. Appl. Phys., 14, 850 (2014). [DOI: http://dx.doi.org/10.1016/j.cap.2014.03.020]   DOI
10 S. K. Kim, S. H. Kim, S. Y. Kim, J. H. Jeon, T. K. Gong, D. H. Choi, D. I. Son, and D. Kim, Ceram. Int., 40, 6673 (2014). [DOI: http://dx.doi.org/10.1016/j.ceramint.2013.11.127]   DOI