• Title/Summary/Keyword: Direct Digital Frequency Synthesizer

Search Result 70, Processing Time 0.027 seconds

Development of the Frequency Synthesizer for Multi-function Radar (다기능 레이더용 주파수합성기 개발)

  • Yi, Hui-min;Choi, Jae-hung;Han, Il-tak
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.8
    • /
    • pp.1099-1106
    • /
    • 2018
  • In this paper, we developed and then analyzed the specifications of the frequency synthesizer which was applied to long range MFR (Multi-function Radar). These specifications were able to guarantee the functions and performance of MFR. MFR was the radar system that used phase array for electronically scanning. This frequency synthesizer made various frequency signals including to STALO (Stable Local Oscillator) for MFR. By analyzing the MFR requirements, we choose the optimal frequency synthesis method and then we got the best performance and functionality including to physical size for this system. We designed and fabricated DDS (Direct Digital Synthesizer)-driven Offset-PLL (Phase Locked Loop) synthesizer to meet the requirements which were low phase noise, fast switching time and low spurious. This synthesizer had less than -131dBc/Hz@100kHz phase noise and less than $4.1{\mu}s$ switching time, respectively.

The Direct Digital Frequency Synthesizer of Parallel Type Using the Differential Quantization (차동 양자화를 사용한 병렬 방식의 직접 디지털 주파수 합성기)

  • Kim, Chong-Il;Lee, Yun-Sik;Lee, Eui-Kwon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.6 no.2
    • /
    • pp.126-137
    • /
    • 2007
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. And we design the phase-to-sine converter using the phase accumulator of parallel type for generating the high frequency. The new ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is saved by the quantized-ROM(Q-ROM) and the differential ROM(D-ROM). So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is decreased according to the ROM size reduction.

  • PDF

Direct digital frequency synthesizer using ROM reduction method (ROM 축소를 이용한 직접디지털 주파수 합성기법)

  • Ahn, Young-Nam;Kim, Chong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.401-404
    • /
    • 2009
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. The new parallel ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is stored by the quantized-ROM and the differential ROM. To reduce the ROM size, we use the differential quantization technique with this two ROM. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is affected mostly by this ROM reduction.

  • PDF

A Direct Digital Frequency Synthesizer Using A Low Power Pipelined Parallel Accumulator (저전력 파이프라인 병렬 누적기를 사용한 직접 디지털 주파수 합성기)

  • 양병도;김이섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.5
    • /
    • pp.361-368
    • /
    • 2003
  • A new high-speed direct digital frequency synthesizer using a low power pipelined parallel accumulator is proposed. The proposed pipelined parallel accumulator uses both pipelining and paralleling techniques to increase speed and to reduce power consumption. The 2-pipelined 2-parallel accumulator only consumes 66% and 69% power of the 4-pipelined accumulator and the 4-parallel accumulator respectively with the same throughput. The proposed accumulator can achieve higher throughput with smaller area and less power consumption in lower clock frequency. All circuit simulations and implementations are based on a 0.35um CMOS process with VCC = 3.3V.

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF

Study of the Direct Digital Frequency Synthesizer for FHSS in Wireless LAN Systems (무선 LAN 시스템에서 FHSS을 위한 직접형 디지틀 주파수 합성기에 대한 연구)

  • 임세홍;장용수;이완범;김환용
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.45-48
    • /
    • 1999
  • The demands of WLAN(Wireless Local Area Network) systems increase rapidly in whole society and this phenonenon has been expected that WLAN wi11 substitute for wired-LAN. The FHSS(Frequency Hopped Spread Spectrum) method using the WLAN is changed to the performance of Frequency synthesizer. In this paper, we proposed pipeline-accumulator using ring-counter method instead of constant accumulator that has demerits of size and power consumption. Designed DDFS generated operating frequency of 167MHz and maximum output frequency of 83.5MHz.

  • PDF

A Direct Digital Frequency Synthesizer Using Quantization ROM And Error ROM (양자화롬과 오차롬을 사용한 직접 디지털 주파수 합성기)

  • 양병도;성기혁;김영준;김이섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2003
  • A new direct digital frequency synthesizer (DDFS) is proposed. The DDFS uses a new ROM compression method that divides each ROM in the conventional DDFS into two ROMs (a quantization ROM and an error ROM). The total size of the ROMs in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 78 is achieved for a DDFS with 12bit output data. A DDFS with 12bit output data for sine function was implemented in a 0.35${\mu}{\textrm}{m}$ CMOS technology. The power dissipation is 9.56㎽ at 100MHz with 3.3V and the maximum operating clock frequency is 330MHz.

Hight throughput CORDIC-based Direct Digital Frequency Synthesizer (고속 CORDIC에 기반한 직접 디지털 주파수 합성기)

  • Park, Minkyoung;Park, Sungsoo;Kim, Kiseon;Lee, Jeong-A
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.784-787
    • /
    • 1999
  • This paper describes a direct digital frequency synthesizer using the CORDIC algorithm, which can be implemented efficiently for a digital sinusoid synthesis. To optimize the hardware design parameters, we perform numerical analysis of the quantization effects for the CORDIC-based architecture. A pipelined architecture is employed to obtain a high data throughput,. We estimate and summarize its hardware costs for a variable accuracy, and a CORDIC-based architecture for 9 bit accuracy is emulated in FPGA.

  • PDF

A Design of a Diredt Digital Frequency Syntheszer with an Array Type CORDIC Pipeline (파이프라인형 CORDIC를 이용한 직접 디지털 주파수 합성기 설계)

  • 남현숙;김대용;유영갑
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.36-43
    • /
    • 1999
  • A new design of a Direct Digital Frequency Synthesizer(DDFS) is presented, where a pipelined Coordinate Rotate Digital Computer(CORDIC) circuit is employed to calculate amplitude values of all the phase angles of sinusoidal waveforms produced. a near-optimal number of pipeline stages is determined based on an error analysis of calculated amplitude values in terms of the number of bits. The DDFS was implemented using a field programmable gate array, yielding a stable operating frequency of 11.75MHz. The measurement results show higher resolution, faster operating speed and simpler fabrication process, compared to ROM-based counterparts. The CORDIC-based DDFS yields 5 times higher resolution than conventional ROM-based versions.

  • PDF

Implementation of Digital Frequency Synthesizer for High Speed Frequency Hopping (DDS를 이용한 고속 주파수 Hopping용 디지털 주파수 합성기 구현)

  • Kim Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.607-610
    • /
    • 2006
  • The Digital Frequency Synthesizer(DFS) that generates the wideband signal with hish speed frequency hopping rate and high frequency resolution characteristics was implemented in this paper. The DFS was applied as local oscillator for direct frequency conversion IF modules of DVB-RCS, which directly generates the transmission immediate frequency signal by using DDS and wideband PLL technologies. The DDS technology provides high speed frequency hopping rate and high frequency resolution characteristics, which ate also the DVB-RCS requirement. The wideband PLL technology also provides the wideband signal generation, which is a necessity for direct frequency conversion modules. The implemented DFS provide the spurious suppression characteristic of -50 dBc, frequency resolution of 0.233 Hz and frequency hopping rate of 125 ns, respectively. Also the DFS represent the amplitude flatness of 3 dB and less in the pass-band and phase noise characteristic of -75 dBc/Hz at 1 kHz frequency offset.

  • PDF