• Title/Summary/Keyword: Dimensionless Parameters

Search Result 372, Processing Time 0.027 seconds

Optimum Shoulder Height Design using Non-dimensional Shape Variables of Ball Bearing (볼 베어링의 무차원 형상변수를 이용한 최적 턱 높이 설계)

  • Choi, DongChul;Kim, TaeWan
    • Tribology and Lubricants
    • /
    • v.35 no.1
    • /
    • pp.37-43
    • /
    • 2019
  • This paper presents an optimization method to determine the shoulder height of an angular contact ball bearing by 3D contact analysis using nondimensional-shaped variables. The load analysis of the ball bearing is performed to calculate the internal load distributions and contact angles of each rolling element. From the results of bearing load analysis and the contact geometry between the ball and inner/outer raceway, 3D contact analyses using influence function are conducted. The nondimensional shoulder height and nondimensional load are defined to give the generalized results. The relationship between the shoulder height and radius of curvature of the shoulder under various loading conditions is investigated in order to propose a design method for the two design parameters. Using nondimensional parameters, the critical shoulder heights are optimized with loads, contact angles, and conformity ratios. We also develop contour maps of the critical shoulder height as functions of internal loads and contact angles for the different contact angles using nondimensional parameters. The results show that the dimensionless shoulder height increased as the contact angle and dimensionless load increased. Conversely, when the conformity ratio increased, the critical shoulder height decreased. Therefore, if the contact angle is reduced and the conformity ratio is increased within the allowable range, it will be an efficient design to reduce the shoulder height of ball bearings.

Gas detonation cell width prediction model based on support vector regression

  • Yu, Jiyang;Hou, Bingxu;Lelyakin, Alexander;Xu, Zhanjie;Jordan, Thomas
    • Nuclear Engineering and Technology
    • /
    • v.49 no.7
    • /
    • pp.1423-1430
    • /
    • 2017
  • Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental data on gas detonation are statistically analyzed to establish a universal method to numerically predict detonation cell widths. It is commonly understood that detonation cell width, ${\lambda}$, is highly correlated with the characteristic reaction zone width, ${\delta}$. Classical parametric regression methods were widely applied in earlier research to build an explicit semiempirical correlation for the ratio of ${\lambda}/{\delta}$. The obtained correlations formulate the dependency of the ratio ${\lambda}/{\delta}$ on a dimensionless effective chemical activation energy and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR), which is based on nonparametric machine learning, is applied to achieve functions with better fitness to experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pressure, is considered as an additional independent variable. It is found that three-parameter SVR can significantly improve the performance of the fitting function. Meanwhile, SVR also provides better adaptability and the model functions can be easily renewed when experimental database is updated or new regression parameters are considered.

Failure Maps and Derivation of Optimal Design Parameters for a Quasi-Kagome Truss Sandwich Panel Subjected to Bending Moment (굽힘하중을 받는 준 카고메 트러스 샌드위치 판재의 파손선도와 최적설계변수의 도출)

  • Lim, Chai-Hong;Jeon, In-Su;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.96-101
    • /
    • 2007
  • A new metallic sandwich panel with a quasi-Kagome truss core subjected to bending load has been analyzed. First, equations of the failure loads corresponding to the eight failure modes are presented. Then, non-dimensional forms of the equations are derived as functions of three geometric variables, one material parameter (yield strain), one load index and one weight index. Failure maps are presented for a given weight index. By using the dimensionless forms of equations as the design constraints, two kinds of optimization are performed. One is based on the weight, that is, the objective function, namely, the dimensionless load is to be maximized for a given weight. Another is based on the load, that is, the dimensionless weight is to be minimized for a given load. The results of the two optimization processes are found to agree each other. The optimized geometric variables are derived as a function of given weights or failure loads. The performance of the quasi-Kagome truss as the core of a sandwich panel is evaluated by comparison with those of honeycomb cored and octet truss cored panels

  • PDF

Failure Maps and Derivation of Optimal Design Parameters for a Quasi-Kagome Truss Sandwich Panel Subjected to Bending Load (굽힘하중을 받는 준 카고메 트러스 샌드위치 판재의 파손선도와 최적설계변수의 도출)

  • Lim, Chai-Hong;Jeon, In-Su;Kang, Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.9
    • /
    • pp.943-950
    • /
    • 2007
  • A new metallic sandwich panel with a quasi-Kagome truss core subjected to bending load has been analyzed. First, equations of the failure loads corresponding to the eight failure modes are presented. Then, non-dimensional forms of the equations are derived as functions of three geometric variables, one material parameter (yield strain), one load index and one weight index. Failure maps are presented for a given weight index. By using the dimensionless forms of equations as the design constraints, two kinds of optimization are performed. One is based on the weight, that is, the objective function, namely, the dimensionless load is to be maximized for a given weight. Another is based on the load, that is, the dimensionless weight is to be minimized for a given load. The results of the two optimization processes are found to agree each other. The optimized geometric variables are derived as a function of given weights or failure loads. The performance of the quasi-Kagome truss as the core of a sandwich panel is evaluated by comparison with those of honeycomb cored and octet truss cored panels.

Analytical study on the tide propagation characteristics in tidal rivers (감조하천의 조석전파 특성에 관한 해석적 연구(금강을 중심으로))

  • 이재형;김경수
    • Water for future
    • /
    • v.24 no.2
    • /
    • pp.81-95
    • /
    • 1991
  • For investigation of the interaction of tide and river flow, the derived equations are solved analytically using the approximation method of perturbation. The convective inertia and nonlinear bottom friction terms are included in the derivations. The harmonic analysis is applied to decompose the complicated interaction of the freshwater discharge with various constituents of tide into its individual interaction with each constituent. In this study, four main constituents(M2, S2, Kl, 01) are included. The relations of dimensionless parameters of the tide, especially the dimensionless damping modulus, are then determined for each solution. The results show that analytical solution of dimensionless damping modulus underestimates the measured value obtained from harmonic analysis. Results of water level obtained by applying the analytical model to a tidal reach of the Keum River in the years 1981 and 1982 show very good agreement with those obtained from the harmonic analysis.

  • PDF

Hydraulic Characteristics of Train Carriage Artificial Reef in Wave and Current Field Conditions (파랑.흐름 공존장에서의 철도차량 인공어초의 수리학적 특성)

  • Sohn, Byung-Kyu;Yi, Byung-Ho;Yoon, Han-Sam
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.108-117
    • /
    • 2011
  • Old train carriages have been used to create artificial reefs (AR) as part of programs to enhance ocean fisheries and recreational resources. This study conducted hydraulic modeling experiments to estimate the structural stability of a train carriage AR. By applying fixed- and movable-bed conditions and Froude similitude, theoretical and hydraulic experiments revealed major design forces(e.g., water waves and currents). The results of this study showed that some dimensionless design parameters (e.g., surf similarity parameters, water particle velocity, scouring, and deposition) also affect the stability of an AR under various wave and current field conditions. In the fixed-bed condition, movement of the AR occurred when dimensionless water particle velocity based on the surf similarity parameter was larger than about 0.32. In the moveable-bed condition, the settlement depth (field values) of the AR ranged from 6 to 30 cm. The results indicated that characteristics of the sediment/bed condition and the direction of external forces acting on an AR should be considered when selecting AR sites.

프로파일링을 한 로울러의 EHL 해석

  • 박태조
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.30-35
    • /
    • 1996
  • An elastohydrodynamic lubrication (EHL) analysis for an axially crown profiled cylindrical roller is carried out using a finite difference method and the Newton-Raphson method. Variations of the minimum film thickness with dimensionless parameters show considerably different from those of infinite solutions.

  • PDF

Modelling of graded rectangular micro-plates with variable length scale parameters

  • Aghazadeh, Reza;Dag, Serkan;Cigeroglu, Ender
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.573-585
    • /
    • 2018
  • This article presents strain gradient elasticity-based procedures for static bending, free vibration and buckling analyses of functionally graded rectangular micro-plates. The developed method allows consideration of smooth spatial variations of length scale parameters of strain gradient elasticity. Governing partial differential equations and boundary conditions are derived by following the variational approach and applying Hamilton's principle. Displacement field is expressed in a unified way to produce numerical results in accordance with Kirchhoff, Mindlin, and third order shear deformation theories. All material properties, including the length scale parameters, are assumed to be functions of the plate thickness coordinate in the derivations. Developed equations are solved numerically by means of differential quadrature method. Proposed procedures are verified through comparisons made to the results available in the literature for certain limiting cases. Further numerical results are provided to illustrate the effects of material and geometric parameters on bending, free vibrations, and buckling. The results generated by Kirchhoff and third order shear deformation theories are in very good agreement, whereas Mindlin plate theory slightly overestimates static deflection and underestimates natural frequency. A rise in the length scale parameter ratio, which identifies the degree of spatial variations, leads to a drop in dimensionless maximum deflection, and increases in dimensionless vibration frequency and buckling load. Size effect is shown to play a more significant role as the plate thickness becomes smaller compared to the length scale parameter. Numerical results indicate that consideration of length scale parameter variation is required for accurate modelling of graded rectangular micro-plates.

Vibration Localization of Open Loop Repeated Structures (개방형 반복구조물의 진동국부화)

  • 하동진;유홍희
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.489-494
    • /
    • 2003
  • Vibration localization characteristics of open loop repeated structures with mistuning are investigated in this paper. Mistuning of a periodic structure often creates significant non-uniformity in vibration responses. As a result of the localization, critical fatigue problems often occur in repeated structures. Therefore, it is of great importance to predict the vibration response of the mistuned repeated structures accurately. In this paper, a simplified model for the open-loop repeated structure is introduced and dimensionless parameters which influence the localization characteristics are identified. The effects of the parameters on the localization characteristics are investigated through numerical study.

  • PDF

A Study on the Periodic Transient Response Characteristics in Annular Fin with Uniform Thickness (均一두께의 環狀흰에서 週期的 過渡應答 特性에 관한 硏究)

  • 김광수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.338-348
    • /
    • 1988
  • This study presents an analysis of periodic heat diffusion in an annular fin with uniform thickness. When the temperature of the fin base is changed in the form of a sinusoidal function, the exact temperature solution can be obtained by Laplace transformation in terms of the dimensionless parameters in the infinite series. Local heat flux and average heat flux, local fin efficiency and average fin efficiency were obtained. Particularly, the table of eigenvalues that are the indispensable condition in solving the heat transfer problem of annular fin in a transient state with convection phenomena at the fin edge is provided. The tables of heat fluxes and average heat fluxes, fin efficiencies and average fin efficiencies are also provided from the computed results. Also, substituting the variations of dimensionless parameters into the these exact solutions, the characteristics of these response are investigated.