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Detonation cell width is an important parameter in hydrogen explosion assessments. The experimental
data on gas detonation are statistically analyzed to establish a universal method to numerically predict
detonation cell widths. It is commonly understood that detonation cell width, 4, is highly correlated with
the characteristic reaction zone width, ¢. Classical parametric regression methods were widely applied in
earlier research to build an explicit semiempirical correlation for the ratio of /6. The obtained correla-
tions formulate the dependency of the ratio A/0 on a dimensionless effective chemical activation energy
and a dimensionless temperature of the gas mixture. In this paper, support vector regression (SVR),
which is based on nonparametric machine learning, is applied to achieve functions with better fitness to
experimental data and more accurate predictions. Furthermore, a third parameter, dimensionless pres-
sure, is considered as an additional independent variable. It is found that three-parameter SVR can
significantly improve the performance of the fitting function. Meanwhile, SVR also provides better
adaptability and the model functions can be easily renewed when experimental database is updated or
new regression parameters are considered.
© 2017 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

After a severe accident in a nuclear power plant, hydrogen,
mainly produced from zirconium—water reaction, can leak into the
inner space of the containment. The hazard of hydrogen detonation
threatens the integrity of the containment, as in the case of the
Fukushima Daiichi nuclear disaster.

When gas detonation takes place, regularly or irregularly
distributed cell structures are observed behind the shock wave. The
average width of the cells is defined as the detonation cell width,
which is represented by A [1]. The value of 1 depends on the initial
thermodynamic condition of the flammable gaseous mixture,
including the temperature and pressure and the concentrations of
the components [2].

Ais commonly used to quantify the detonation risk of flammable
gaseous mixtures. For a given gaseous mixture in a given confined
volume, the hazard potential caused by detonation may be evalu-
ated with the help of the dimensionless ratio of A to the
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characteristic geometric size, noted as L. According to the
deflagration-to-detonation transition criterion, which is also
known in the field of hydrogen safety research as the A-criterion,
detonation is likely to happen when L/A is greater than 7 [3].
Therefore, it is of significant importance to reliably predict A for
detonable gases.

To date, there has been no sophisticated theoretical expression
to compute A because of the complexity and uncertainty of the
detonation phenomenon. Present solutions to predict the value of 1
are all based on empirical or semiempirical correlations established
by fitting a large amount of experimental data.

At present, there are two commonly used approaches to esti-
mate 1 [4]. One offers simple and direct determination of 1 using
the initial conditions. In Dorofeev et al [5], a correlation between A
and the initial concentrations of hydrogen and steam, and the
initial temperature and pressure is presented. It is clear that such a
fit can be used only within the range of the experimental data.
Extrapolation of the fitted function beyond the range of measure-
ments does not give reliable values. Another approach is based on
an analysis of the correlation of the characteristic reaction zone
widths, 4, with A. The idea that A and ¢ can be correlated was first
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proposed in [6]; such an approach allows estimations of detonation
cell sizes for general gas mixtures apart from hydrogen—air—steam
mixtures (e.g., hydrocarbon—air mixtures). Quite a few works in the
literature [7—9] suggest that two main parameters can influence
the stability of the wave and cellular structure. One is the dimen-
sionless effective activation energy, which can be interpreted as a
characteristic of the sensitivity of the global reaction time to vari-
ations of the postshock temperature caused by changes in the
strength of the leading shock. The other is a dimensionless tem-
perature describing the relation between the released chemical
energy and the initial thermal energy. In Gavrikov et al [10],
mixture composition and initial thermal—dynamic conditions are
at first preconditioned into these two parameters. Then, using
analytical expressions and the least squares fitting method, a cor-
relation is built between 4/6 and the two dimensionless parameters.

The correlation in Gavrikov et al [10] achieved success in pre-
cisely predicting A within a wide range of thermal conditions for
hydrogen—oxidizer mixtures. However, the approach is incapable
of predicting A for hydrocarbon—oxidizer mixtures when the
equivalence ratio is larger than 2. Moreover, an attempt to intro-
duce a third parameter to obtain better fitness failed because
unphysical oscillations showed up on the regression curves.
Because earlier studies suggested that some other parameters
could be significant in determining the A/0 value [1,11], it is
necessary to apply better mathematical tools to take more than two
parameters into consideration and to improve the precision of the
function.

Actually, the aforementioned two approaches are both based on
parametric regression. This kind of regression demands an a priori
assumption of the correlation form, which can be very complicated
and difficult to achieve. Meanwhile, parametric regression suffers
from weak robustness and poor adaptability performance [12].
When new data points are added and/or additional regression
parameters are considered, the regression model can become
invalid and needs to be replaced.

To overcome the disadvantages of parametric regression, a
nonparametric regression method, support vector regression (SVR),
is proposed and discussed in this study. It requires no assumptions
about the form of the function, and thus it does not offer an explicit
equation but a high-dimensional matrix that describes the rela-
tionship among the data points. The fitting process is totally driven
by the data itself, leading to better fitness of data and higher sta-
bility. The adaptability of the method makes it easier to include new
additional data points or new parameters.

The physical idea proposed by Gavrikov et al [10], that /0 is a
function of dimensionless activation energy and dimensionless
temperature, is used and developed in the study. A third parameter,
dimensionless pressure, is taken into account to achieve better
fitness of data and higher precision.

2. Definitions of parameters

Most of the definitions of the physical parameters involved in
this paper utilize the ideas of Gavrikov et al [10]. Some modifica-
tions for better regression results are proposed.

2.1. Characteristic reaction zone width

There are several definitions of the characteristic reaction zone
width, and in this paper the one expressed by Shepherd [13] is
adopted, in which the width is defined as the distance between the
leading shock and the location of the maximum rate of temperature
rise. The value of the width can be approximately evaluated by the
product of the characteristic reaction time, tc,, and the postshock
gas velocity, D:

0 = Dto, (1)

The original definition of t, is a period during which the con-
sumption of the limited component is equal to 90% of the total
consumption defined by the final equilibrium state. The term
“limited component” stands for fuel for lean mixtures or oxidizer
for rich mixtures. With such a definition, however, discontinuity
occurs for t;y when the equilibration ratio is close to 1, at which
point a transition of the reaction process indicator occurs between
the fuel and the oxidizer. Therefore, the definition of t., used in this
paper is expressed as an oxidizer consumption equal to 90% of the
total consumption defined by the final equilibrium state.

2.2. Dimensionless activation energy

The dimensionless activation energy is defined as Ea/R/Tps,
where E, is the effective activation energy, R the gas constant, and
Tps the postshock temperature of the gas. The definition of E, is
based on calculations of the characteristic reaction times tq,1 and
tch2 behind shocks with two different traveling speeds D1 and D5:

Eq 1n(tch.l /tch.z)

R~ 1/T(Dy) ~ 1/1(D) (2)

where T(D1) and T(D,) are temperatures of the gas behind the
shocks with speeds D; and D,, respectively. Meanwhile, these
temperatures are also the actual starting temperatures of the
chemical reactions. The parameter E, in Eq. (2) describes the mean
sensitivity of the reaction time to the changes in shock strength
between D; and D».

According to an analysis of the reaction conditions in actual
multidimensional detonations, as well as prediction accuracy
comparisons, Gavrikov et al [10] chose the pair (1.0Dj, 1.6D;) as the
values of (D1, D) from the following four candidates:

(1.0D,,1.6D); (1.2D,1.6D); (1.0D4, 1.4Dcj); (1.0D, 1.4Dy).

where D is the Chapman—]Jouguet velocity. Two more pairs,
(0.9Dj, 1.6D¢j) and (0.9D;, 1.4D¢;), are tested in this study. It is found
empirically that, among the six candidate pairs, the pair of (0.9D;,
1.6Dj) always offers the best predictions. According to the classic
one-dimensional ZND detonation model, detonation does not occur
when D¢ is not fully reached. However, to compute activation en-
ergy in this model, the speed of 0.9D; in the pair (0.9Dj, 1.6Dyj) is
taken merely as a reference speed. Thus, the calculation of the
activation energy is based on the shock strength, regardless of the
occurrence of detonation. Therefore, activation energy is computed
with Dy =0.9D¢j and D; = 1.6D;j, while their mean value D= 1.25D;
is used to compute the postshock properties.

2.3. Dimensionless temperature

The ratio of the energy released in reaction to the initial energy
of the unignited mixture is expressed as Q/(C,Tp), where Q is the
reaction heat, C, the constant-volume heat capacity, and Ty is the
initial temperature of the unignited mixture. This ratio describes
the relationship between the released chemical energy and the
initial thermal energy. However, the value of Q is not defined for the
real thermochemistry of a combustible mixture. Meanwhile, a
dimensionless temperature Ty,/Tp is related to Q/(C,Tp) and the
variation in the ratio [Q/(C,To)]/(Tyn/To) is small for most detonable
mixtures. It is estimated that, for strong waves of which the Mach
number is larger than 2, the variation is within +25% of an average
value of 4.8. Therefore, Ty,/To is selected to replace Q/(CyTp). Typ is



J. Yu et al. / Nuclear Engineering and Technology 49 (2017) 1423—1430 1425

the von Neumann temperature or the temperature of the von
Neumann state, which is the maximum extent to which the flam-
mable gaseous mixture can be compressed by a shock wave before
chemical reaction starts. The value of Ty, in the study varies be-
tween 1,300 K and 2,400 K, while the value of T,/Tp is within the
range of 2—8.

2.4. Third dimensionless variable

To improve the performance of the regression in this study,
several potential dimensionless parameters are tested as a third
variable for regression besides Ea/R/Tps and Tyn/To. The parameters
include: (1) the ratio of induction time to energy release time, tjnq/
trel; (2) the Mach number of the postshock gas, Ma; (3) the
expansion ratio of the gas during the reaction, o; (4) the heat ca-
pacity ratio of the reactant, v; and (5) the ratio of the postshock
pressure to the initial pressure, pps/po. It is found that, among these
parameters, considering pps/po as the third independent regression
variable leads to the best regression result. Therefore, Ea/R/Tps, Tyn/
To, and pps/po are decided on as independent variables for three-
variate regression.

The original experimental data include initial temperature,
pressure, concentrations of the gaseous components, and
measured detonation cell width for different detonation cases.
These data are mainly collected from Kaneshige and Shepherd's
detonation database [14], while some are unpublished experi-
mental data supplied by the Karlsruhe Institute of Technology. The
data are preconditioned into Ea/R/Tps, Tyn/To, Pps/Po, and 1g(4/0) us-
ing an open-source chemical dynamics code from Goodwin et al.
[15]. Regressions are then performed with (Ea/R/Tps, Tyn/To) or (Ea/R/
Tps, Tun/To, Pps/Po) as independent variables and lg(4/6) as depen-
dent regression variable.

3. Support vector regression

When a parametric method such as least square regression is
applied to fit the data, the fitting function attempts to go through
every data point. As noise exists in experimental data, such an
attempt without the consideration of the noise can lead to over-
fitting, resulting in heavy oscillation and bad stability of the fitting
curve, as shown in Fig. 1. To overcome this disadvantage of the
classical parametric regression method, SVR is applied in this study.

In the categories of machine learning, SVR belongs to supervised
learning [16]. During regression, the learning program is presented
with example inputs and their desired outputs. This process is
called training; the goal is to summarize a rule that can map new
inputs to predicted outputs. SVR is based on the theory of support
vector machines. Detailed information about this method can be
found in previously published studies [17,18].

Undgrfitting

Proper fitting

A

Fig. 2. One-dimensional linear SVR.

Assuming f(x) is the fitting function, an error limit ¢ is set to f{x)
and data noise between —e and +¢ is neglected, as shown in Fig. 2.
Non-negative slack variables, £ and ¢, are defined to measure the
deviation of the data points of which the error is less than —¢ or
larger than +e. Therefore, the task of SVR is to search for a function
that covers as many as data points as possible between f{x)—¢ and
flx)+e and to minimize the sum of £ and £*. The final form of the
fitting function is given as follows:

n

y:f(?) :Z(a?—a»k(?i,;) +b (3)

i=1
where k(x;, x) is the kernel function, x; is the ith data point, x is the
independent variable, and «; and « are regression parameters
determined during the regression process.

There are many kinds of kernel functions; the most commonly
used one is called the Gaussian kernel:

k(Z.R) = exp(—v[X & 2) (4)

where v is the kernel width representing the dispersion degree of
the training data.

Before doing SVR regression, three empirical parameters must
be manually decided on. These parameters are called hyper-
parameters. In SVR, hyperparameters include ¢ and v, mentioned
above, and a positive constant C determining the trade-off between
the flatness of f{x) and the amount up to which deviations larger

Qvgrfittjng

: 1*{ |

0 2 4 6 8 10

Fig. 1. Examples of underfitting and overfitting.



1426 J. Yu et al. / Nuclear Engineering and Technology 49 (2017) 1423—1430

than ¢ are tolerated.

Ten-fold cross validation is applied to search for the optimal
combination of hyperparameters. To perform the 10-fold cross
validation, first, estimated values of the hyperparameters should be
obtained beforehand. The whole database is then randomly divided
into 10 equal-sized sets. Nine of the data sets are selected as the
training set and are used for regression to obtain the fitting func-
tion. The one set left is used as a testing set to compute the cor-
relation coefficient for the fitting function. This process is repeated
10 times with each set as a testing set and the other nine sets as
training sets. The mean value of the 10 correlation coefficients
computed during the above processes is called the cross-validation
score. The score normally varies between 0 and 1 and is a mea-
surement of the performance of regression. Higher cross-validation
scores mean that, with the given hyperparameters, the regression
result offers a better balance between the fitness to the measured
data and the stability of the fitting function. Further information on
cross validation can be found in Kohavi [19].

In our case, at first, possible ranges for ¢, v, and C are assumed
beforehand. Then the values of the three parameters are discretized
with proper distances. The values of ¢, y, and C are combined and a
three-dimensional testing matrix is constructed. The 10-fold cross-
validation score with each set of (¢, v, C) then can be computed. The
optimal combination of the hyperparameters is found by posi-
tioning the maximum value of the corresponding score.

4. Comparisons of regression results

The regression results of SVR and parametric regression are
compared with the experimental data used as testing points.
Regression work using SVR is performed with the open-source
Python toolbox, scikit-learn [20]. The toolbox also provides a
module to compute the cross-validation scores, which helps in
finding the optimal hyperparameters. As for the parametric re-
gressions, Gavrikov et al's [10] method is applied to construct a
correlation using different simple analytical expressions and least
square fitting. The coefficient of the determinant, R?, is applied as
an important indicator of the fitness to the training points. The
definition of R? is as in Eq. (5), where y; is the observation value of
the data, f; the value predicted by the fitting function, and y the
mean of y;.

i > i —f)?
RPz1 -1 5
S i) ©)

i
4.1. Two-variate regression

The regression with the form:

()l )

is performed with two-variate SVR and the parametric method.
For the parametric method, the correlation that gives the least
deviation from the data is given as follows:

1g(4/6) = aX + bY + cY? + dXY +eXY? + fInX + glnY + hX/Y
+iY/X+jX2/Y+kY2/X+lX/Y2+mY/X2+n
(7)

where a = 6.638580294; b = 9.416228276; ¢ = —0.241216936;
d = -0903635419; e = 0.026723775; f = -30.64629363;

g = 5.252928942; h = -1.84853496; i = -44.68907842;
j = -026945211; k = 0.904164774; | = 4.70127989%4;
m = 48.23143082; n = 20.86468644, and X = E,/(RTs), Y = Tyn/To.

For SVR, the optimistic hyperparameters are C = 1,000,
v = 0.0021, and ¢ = 0.006.

4.2. Three-variate regression

The regression with the form

A Eq Tmp s)
l <] = y =B 8
g(é) f<RTps To’ po ®)
is performed with three-variate SVR and the parametric method.

For the parametric method, the correlation that gives the least
deviation from the data is given as

lg(A/6) = aY¥Y +bZ +cX?> +dXY + eXZ + fXYZ +gInX +hInY
+ilnZ+jX/Z+kY/Z+IX/Y +mZ/X +nY/X

0X2Z + pY2Z + qXZ% + X3 +sY3 + X2 /z
+uY2/x+uY2/z+sz/Y+xx/y2+yx/22
+ZY/Z2 + const

9)

where a = 16.1711908; b = -13077105; ¢ = 0.6118572;
d = —1.6246259; e = 0.0829447; f = 0.0092600; g = 28.7740088;
h=-58.7212346; i = 25.5080873; j = 61.4810312; k = 103.4928602;
1=-34.1012837; m = 0.06369708; n = 5.3476021; 0 = —0.0032753;
p = 0.0019715; g = —0.0004605; r = —0.0125591; s = —0.0241242;
t=-0.7328976; u = —0.9088536; v = —7.4249634; w = 0.0240641;
x = 253028072; y = —198.9036880; z = -—546.7832086;
const = —60.8717020; and X = E;/(RTps), Y = Tun/To, Z = pps/Po.

For SVR, the optimistic hyperparameters are C = 1,000,
v = 0.0035, and ¢ = 0.001.

The comparisons between the experimental data and the pre-
diction results by different regression methods are presented in

10° :
e o Exp
----- 2-variate parametric
-~ o =+« 3-variate parametric
e “ - = 2-variate SVR
E N — 3-variate SVR
2 [\ A a4 Gavrikov

£ 10 o
°
2
]
v}
c
S
w© 10
c
(e}
]
[
(@]

1 0

Qo 10° 10°

Equivalence ratio

Fig. 3. Comparison among predicted values and experimental data for Hy—air mixture,
initialed at 1 atm, 500 K. SVR, support vector regression.
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=
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Fig. 4. Comparisons among predicted values and experimental data for H,—air—15%
CO, mixture, initialed at 1 atm, 293 K. SVR, support vector regression.
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Fig. 5. Comparisons among predicted values and experimental data for 66% Hy—air
initialed at 293 K, different pressures. SVR, support vector regression.

Figs. 3—7. The predictions by Gavrikov et al's [10] original correla-
tion are also presented, though the database and the method of
calculating the parameters in his study might be different.

It can be found that, apart from the hydrocarbon—oxidizer case
in Fig. 7, all methods (two/three-variate SVR/parametric re-
gressions) offer good accuracy in predicting detonation cell width
for Hy—O,—dilutant mixtures. Meanwhile, predictions by both
methods with pps/po as a third independent regression variable
show improved agreement with the experimental data, especially
in Figs. 3 and 4. Compared with those of three-variate parametric
regression, three-variate SVR results show much better fitness to
the measured data, especially in the cases of hydrocarbon—oxidizer
mixtures, shown in Fig. 7, in which deteriorated stability of curves
occurred for three-variate parametric regression.

10°

® o Exp

----- 2-variate parametric
«+= 3-variate parametric
== 2-variate SVR

- 3-variate SVR

101 a a Gavrikov

Detonation cell width (mm)

107
10 20 30 40 50 60 70 80 90

Diluent volume percentage (%)

Fig. 6. Comparisons among predicted values and experimental data for H,—0,—Ar
mixture, initialed at 1 atm, 293 K. SVR, support vector regression.
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Fig. 7. Comparisons among predicted values and experimental data for CsHg—O,
mixture, initialed at 1 atm, 293 K. SVR, support vector regression.

The values of R? for all the methods are presented in Table 1,
which shows that three-variate SVR offers the best fitness to the
training data. Overall, it can be concluded that three-variate SVR
provides the best regression results.

4.3. Three-variate SVR predictions for all testing points

In Sections 4.1 and 4.2, only the most representative compari-
sons are presented. The prediction results of the best regression
method, three-variate SVR, for all testing points are shown in
Figs. 8—12.
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Table 1
Values of R? for each regression method.

Regression Two-variate Two-variate Three-variate Three-variate
method parametric SVR parametric SVR
R? 0.771 0.743 0.843 0.876

SVR, support vector regression.
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o ® 300Kexp| ‘5. A
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A A 500K.exp v
500K,SVR
v v 650K,exp
650 K,SVR

Detonation cell width (mm)

10°

10™ 10° 10t

Equivalence ratio

Fig. 8. Three-variate support vector regression (SVR)-predicted and measured A versus
equivalence ratio at different initial temperatures for Hy—air mixtures, 1 atm.
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Fig. 9. Three-variate support vector regression (SVR)-predicted and measured 4 versus
equivalence ratio with different initial CO, concentrations for Hy—air—CO, mixtures,
1 atm, 293 K.

It can be concluded that the model is able to give reliable esti-
mations of the cell width for a broad scope of detonable mixtures.
The deviation between calculated values and experimental data is
within the laboratory tolerance of the experimental data. Actually,
the predictions of three-variate SVR can fit the experimental data
very well within the valid range of independent variables.
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Fig. 10. Three-variate support vector regression (SVR)-predicted and measured 1
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Fig. 11. Three-variate support vector regression (SVR)-predicted and measured A
versus volume percentage of different diluents for stoichiometric H,—O,—diluent
mixtures, 1 atm, 293 K.

Ea/R/Tps :4~15

Ton/To : 2 ~ (104 — 4x) /11

Pps /Po : 10 ~ (2020 — 120x)/11
where x = Eq/R/Tps

5. Discussion

One thing to be discussed is why a third regression parameter of
Pps/Po can improve the behavior of the regression to such a degree.
One possible reason may be that the status change of the gaseous
mixture before and after the shock wave is considered by the
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Fig. 12. Three-variate support vector regression (SVR)-predicted and measured A
versus equivalence ratio with different hydrocarbon—0, mixtures, 1 atm, 293 K.

introduction of the third parameter. According to earlier in-
troductions to E;/R/Tps and Tyn/To, the physical meanings of both the
terms involve only the chemical reaction process itself. However,
the mixture is compressed by the shock before the reaction. The
pressure then rises to a value that is assumed to be constant during
the reaction. The addition of p,s/po considers the pressure increase,
and links the initial state of the gaseous mixture to the starting
point of the reaction.

Another thing is the selection of an indicator to indicate the
reaction process when defining tc,. In Gavrikov et al [10], the
concentration of the limited component is used as the indicator.
However, such a definition causes unexpected discontinuity in the
curves of t., when the equivalence ratio is close to 1. This problem is
solved by applying the concentration of the oxidizer as the indi-
cator, but another problem arises when more than one species of
oxidizer exists. Other physical parameters are also considered. A
proper indicator requires the parameter to vary monotonously and
the variation trend should be the same for all detonation reactions.
Temperature is abandoned because its decrease can be observed for
1.6D¢; detonation in certain conditions. The situation is similar for
Gibbs free energy. Entropy, increasing in all spontaneous reactions,
seems to be a perfect indicator. However, the regression results are
not as good as those obtained using the concentration of oxidizer
for single-oxidizer detonations. Nevertheless, entropy remains a
potential indicator for future study.

6. Conclusions

Compared with the classical parametric methods, SVR, which is
nonparametric and based on machine learning, achieves a more
universal and more accurate model in predicting detonation cell
width for gaseous mixtures with given compositions and ther-
mal—dynamic conditions. Cross validation is applied to determine
the optimal hyperparameters that make the best balance between
the fitness to the training data and the stability of the function.

The addition of the ratio pps/po as a third independent variable
in the regression is found to ameliorate the regression results to a
significant degree. The three-variate SVR process produces the best

prediction results because of the higher R? value, that is, better
fitness to training data and better agreement to measured data of
the testing points, that is, higher prediction accuracy.

Another advantage of SVRis its strong adaptability. Once new data
are added in the training set, or new parameters are considered as
independent variables, the model can be modified simply by using
the cross-validation tool to decide on another set of optimal hyper-
parameters. As for parametric regression, updating of the database or
the parameters means a complete change in the correlation, of which
the form is usually very complicated and hard to assume.

As for practical applications of SVR, though there is no explicit
correlation that can provide a straightforward way to compute the
width, the regression results can be stored in a text file that is updated
only when the regression is redone. The information in this file is
loaded in the computer's memory before making new predictions.
The time cost in this step is tiny, so the SVR result, considering its high
prediction precision, is suitable for industrial computations.
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