• Title/Summary/Keyword: Digital radiation

Search Result 572, Processing Time 0.032 seconds

Development of Evaluation Modules for Evaluating Decommissioning Scenarious Using Digital Mock-Up System (디지털 목업 시스템을 이용한 해체 시나리오 평가용 해체공정 평가모듈 개발)

  • Kim Sung-Kyun;Park Hee-Sung;Lee Kune-Woo;Jung Chong-Hun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.3
    • /
    • pp.265-273
    • /
    • 2006
  • In the decommissioning and decontamination(D&D) planning stage, it is important that the scenarios are evaluated from an engineering point of views because the decommissioning work has to be executed economically and safely by following the best scenarios. Therefore, we need to develope several modules to evaluate the decommissioning scenarios. In this paper, the digital mock-up system is constructed in the virtual space to simulate the whole decommissioning process. The schedule evaluating equation and cost evaluation equation are derived to calculate the working time and the expected cost. And in order to easily identify the radiation level about the activated objects, the radiation visualization module is developed. Finally, on the basis of the obtained results from the Digital Mock-up and other important factors, the evaluating method of the scenarios that can indicate the best scenario is described.

  • PDF

The reduction methods of operator's radiation dose for portable dental X-ray machines

  • Cho, Jeong-Yeon;Han, Won-Jeong
    • Restorative Dentistry and Endodontics
    • /
    • v.37 no.3
    • /
    • pp.160-164
    • /
    • 2012
  • Objectives: This study was aimed to investigate the methods to reduce operator's radiation dose when taking intraoral radiographs with portable dental X-ray machines. Materials and Methods: Two kinds of portable dental X-ray machines (DX3000, Dexcowin and Rextar, Posdion) were used. Operator's radiation dose was measured with an 1,800 cc ionization chamber (RadCal Corp.) at the hand level of X-ray tubehead and at the operator's chest and waist levels with and without the backscatter shield. The operator's radiation dose at the hand level was measured with and without lead gloves and with long and short cones. Results: The backscatter shield reduced operator's radiation dose at the hand level of X-ray tubehead to 23 - 32%, the lead gloves to 26 - 31%, and long cone to 48 - 52%. And the backscatter shield reduced operator's radiation dose at the operator's chest and waist levels to 0.1 - 37%. Conclusions: When portable dental X-ray systems are used, it is recommended to select X-ray machine attached with a backscatter shield and a long cone and to wear the lead gloves.

A Study of Real Time Verification System or Radiation Therapy (방사선치료 위치 실시간 검증시스템에 관한 연구)

  • Kim, Y.J.;Ji, Y.H.;Lee, D.H.;Lee, D.H.;Hong, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1997 no.11
    • /
    • pp.164-167
    • /
    • 1997
  • The treatment setup of patients during irradiation is an important aspect in relation to the success of radiotherapy. Imaging with the treatment beam is a widely used method or verification of the radiation field position relative to the target area, prior to or during irradiation. In this paper, Real time digital radiography system was implemented or verification of local error between simulation plan and radiation therapy machine. Portal image can be acquired by CCD camera, image board and pentium PC after therapy Radiation was converted into light by a metal/fluorescent Screen. The resulting image quality is comparable to film, so the imaging system represents a promising alternative to film as a method of verifying patient positioning in radiotherapy. Edge detection and field size measurement were also implemented and detected automatically for verification of treatment position. Field edge was added to the original image or checking the anatomical treatment verification by therapy technicians. By means of therapy efficiency improvement and decrease of Radiation side effects with these techniques, Exact Radiation treatments are expected.

  • PDF

Evaluation of Image Quality & Absorbed Dose using MCNPX Simulation in the Digital Radiography System (디지털방사선영상시스템에서 MCNPX 시뮬레이션을 이용한 영상 품질 및 선량평가)

  • An, Hyeon;Lee, Dongyeon;Ko, Sungjin;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.10 no.5
    • /
    • pp.327-335
    • /
    • 2016
  • The study is enforce to study image quality evaluation of condition provide the IEC and combination of clinical conditions each quality of radiation that image quality to assess the conditions provided to IEC in the clinical environment to conduct image quality assessment of the digital radiography system in the detector have environmental limits. First, image quality evaluation was evaluated by measuring the MTF, NPS using four quality of radiation and Using MCNPX simulation lastly DQE make a image quality evaluation after calculating the particle fluence to analyze spectrum quality of radiation. Second, Using MCNPX simulation of four quality of radiation was evaluated absorbed dose rate about electronic 1 per unit air, water, muscle, bone by using Radiation flux density and energy, mass-energy absorption coefficient of matter. Results of evaluation of image quality, MTF of four quality of radiation was satisfied diagnosis frequency domain 1.0 ~ 3.0 lp/mm of general X-ray that indicated 1.13 ~ 2.91 lp/mm spatial frequency. The NPS has added filter, spatial frequency 0.5 lp/mm at standard NPS showed a tendency to decrease after increase. Unused added filter, spatial frequency 0.5 lp/mm at standard NPS showed a certain NPS result value after decrease. DQE in 70 kVp / unuesd added filter(21 mm Al) / SID 150 cm that patial frequency 1.5 lp/mm at standard showed a tendency to decrease after certain value showed. Patial frequency in the rest quality of radiation was showed a tendency to decrease after increase. Results of evaluation of absorbed dose, air < water < muscle < bone in the order showed a tendency to increase. Based on the results of this study provide to basic data that present for the image quality evaluation method of a digital radiation imaging system in various the clinical condition.

The Characteristic of Radiation Exposure for Radiologist with Applying Condition in Interventional Radiology in Cardiology (심장내과의 중재적 시술시 시술조건에 따른 방사선사의 방사선 노출 특성)

  • Park, Jeong-Kyu;Cho, Euy-Hyun
    • Journal of Digital Contents Society
    • /
    • v.13 no.3
    • /
    • pp.421-429
    • /
    • 2012
  • Lately, the number of interventional radiology is increased by the extension of procedure in medical radiation, and radiation exposure may be appeared differently by interventional radiologists, it is caused increase of radiation dose for radiation worker, patient, and radiologists. This study has done a comparative analysis characteristic of radiation exposure for five radiologists who executed interventional cardiology for 303 patients in S university hospital of Gyeong-Buk from Nov. 1, 2011 to Jan. 31, 2011. The average exposure time of five radiologists was 697.95sec. The average of cumulative DAP(exp) for patients was $52,730mGycm^2$ and the average of total DAP for patients was $104,875.14mGycm^2$. The average of frames for image was 855.52 frames in acquired images, and the average of frames for images was 802.2 frames in exposure images. They were statistically significant differences (p<0.05). Exposure time, cumulative DAP(fluro), cumulative DAP(exp), total DAP, acquired image, and exposure image were high correlation except cumulative DAP(exp), and acquired runs in x-ray exposure characteristics of machine. Exposure time was a great influence on radiologist. It signified that the more exposure time lead to the more radiation dose for radiologist. Radiation dose is related to ability, experience, difficulty, and precision of procedures in interventional procedure. The number of angiography and exposure time is difficult to control by radiologists. Therefore, it is in need of reasonable system which was evaluated the real dose of medical teams in interventional proceedings. We think that self education and training are required to reduce radiation dose for radiologists and radiation workers.

Relationship between Solar Radiation in Complex Terrains and Shaded Relief Images (복잡지형에서의 일사량과 휘도 간의 관계 구명)

  • Yun, Eun-Jeong;Kim, Dae-Jun;Kim, Jin-Hee;Kang, Dae-Gyoon;Kim, Soo-Ock;Kim, Yongseok
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.23 no.4
    • /
    • pp.283-294
    • /
    • 2021
  • Solar radiation is an important meteorological factor in the agricultural sector. The ground exposed to sunlight is highly influenced by the surrounding terrains especially in South Korea where the topology is complex. The solar radiation on an inclined surface is estimated using a solar irradiance correction factor for the slope of the terrain along with the solar radiation on a horizontal surface. However, such an estimation method assumes that there is no barrier in surroundings, which blocks sunlight from the sky. This would result in errors in estimation of solar radiation because the effect of shading caused by the surrounding terrain has not been taken into account sufficiently. In this study, the shading effect was simulated to obtain the brightness value (BV), which was used as a correction factor. The shaded relief images, which were generated using a 30m-resolution digital elevation model (DEM), were used to derive the BVs. These images were also prepared using the position of the sun and the relief of the terrain as inputs. The gridded data where the variation of direct solar radiation was quantified as brightness were obtained. The value of cells in the gridded data ranged from 0 (the darkest value) to 255 (the brightest value). The BV analysis was performed using meteorological observation data at 22 stations installed in study area. The observed insolation was compared with the BV of each point under clear and cloudless condition. It was found that brightness values were significantly correlated with the solar radiation, which confirmed that shading due to terrain could explain the variation in direct solar radiation. Further studies are needed to accurately estimate detailed solar radiation using shaded relief images and brightness values.

Millimeter-Wave CMOS On-Chip Dipole Antenna Design Optimization (밀리미터파 CMOS 온-칩 다이폴 안테나 설계 최적화)

  • Choi, GeunRyoung;Choi, Seung-Ho;Lee, Kook Joo;Kim, Moonil;Kim, Dowon;Jung, Dong Yun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.6
    • /
    • pp.595-601
    • /
    • 2013
  • This paper presents an optimized design of a millimeter-wave on-chip dipole antenna using CMOS process. The serious flaw of the antenna using CMOS process is low radiation efficiency because of high permittivity and conductivity. To overcome the weakness, we need to widen radiation area in air and optimize distance between an antenna and a reflector. The radiation efficiency and bandwidth of the designed antenna are respectively 16.5 % and 22.3 % at 80 GHz. Systematic methods are attempt to analyze an effect on the antenna radiation efficiency. To widen radiation area in air, substrate cut angle and distance between the antenna and chip edge are adjusted. In addition, to optimize distance between an antenna and reflector, substrate thickness and distance between the antenna and a circuit ground plane are adjusted.

Implementation of A9-Based Digital Portable Radiation Detector with the Algorithm of Temperature Compensation in Scintillator (Scintillator에 온도 보정 알고리즘을 적용한 A9기반의 디지털 휴대용 방사선 검출기 구현)

  • Lim, Ik-Chan;Park, Geo;Kim, Young-kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.10
    • /
    • pp.1981-1989
    • /
    • 2017
  • In accordance with the global strengthening of security systems for the safety of the shipping and logistics industry, the development of core technologies within the field has become a key in the establishment of Korea's own national logistics security system. Further in line with these global developments, there is growing attention within Korea to the development of portable radiation detectors capable of detecting gamma ray nuclides. In addition, many parts are becoming localized. In this research, instead of Pulse Shaping Board, which is used in existing portable radiation detectors, we have implemented an Algorithm to discriminate nuclides and correct the temperature conversion efficiency of the scintillator. This paper aims to improve the performance of these devices through the implementation of a temperature conversional algorithm within the scintillator of the A9-based digital portable radiation detector.

A study on Protector Performance Evaluation According to X-ray Scattering Distribution of Portable Radiation System (이동형 방사선 발생장치 차폐물 설치에 관한 연구)

  • Kim, Hyong-Gyun;Sung, Dong-Keon;Cho, Kyong-Mi;Kim, Sang-Beom;Kim, Jae-Young;Choi, Jun-Ho
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.85-92
    • /
    • 2009
  • This study, "The study about performance evaluations of mobile cover for X-ray's diffusion and distribution in mobile radiation" is based on the rules of mobile defense apparatus for radiation producer in 2006. To use the mobile cover for X-ray for diagnosis has been compulsory in common wards except operation rooms, emergency rooms and intensive care units. we have confirmed the effect in arbitrary shielding material after Qualitiy Control was carried out for accuracy in an experiment of mobile photographing equipment. The performance evaluation was conducted with the fabrics of selenium, 0.2 mmPb, 0.1 mmPb and aluminiums. Considering the result, we choosed 0.1 mmPb and attached cover to mobile photographing equipment. We have finished making the cover after drew up the draft to attach cover to mobile photographing equipment through the modeling and the structural analysis. the process of the study is that we assembled the manufactured structures and carried out the practical experiment to take the photograph after attaching the fabric of 0.1 mmPb to mobile photographing equipment. It is need of additional thesises hereafter that we compare the result between the part to improve for safety besides convenience in photographic experiment about clinical radiation and the effect of covering the diffusion in condition attached the cover.

  • PDF

Proposed Institutional Diagnostic Reference Levels in Computed and Direct Digital Radiography Examinations in Two Teaching Hospitals

  • Emmanuel Gyan;George Amoako;Stephen Inkoom;Christiana Subaar;Barry Rahman Maamah
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.9-14
    • /
    • 2023
  • Background: The detectors of both computed radiography (CR) and direct digital radiography (DR) have a wide dynamic range that could tolerate high values of exposure factors without an adverse effect on image quality. Therefore, this study aims to assess patient radiation dose and proposes institutional diagnostic reference levels (DRLs) for two teaching hospitals in Ghana. Materials and Methods: CR and DR systems were utilized in this study from two teaching hospitals. The CR system was manufactured by Philips Medical Systems DMC GmbH, while the DR system was manufactured by General Electric. The entrance skin doses (ESDs) were calculated using the standard equation and the tube output measurements. Free-in-air kerma (µGy) was measured using a calibrated radiation dosimeter. The proposed institutional DRLs were estimated using 75th percentiles values of the estimated ESDs for nine radiographic projections. Results and Discussion: The calculated DRLs were 0.4, 1.6, 3.4, 0.5, 0.4, 1.1, 1.0, 1.2, and 1.7 mGy for chest posteroanterior (PA), lumbar spine anteroposterior (AP), lumbar spine lateral (LAT), cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively in CR system. In the DR system, the values were 0.3, 1.6, 3.1, 0.4, 0.3, 0.7, 0.6, 0.9, and 1.3 for chest PA, lumbar spine AP, lumbar spine LAT, cervical spine AP, cervical spine LAT, skull PA, pelvis AP, and abdomen AP, respectively. Conclusion: Institutional DRLs in nine radiographic projections have been proposed for two teaching hospitals in Ghana for the first time. The proposed DRLs will serve as baseline data for establishing local DRLs in the hospitals and will be a valuable tool in optimizing patient doses.