• Title/Summary/Keyword: Digital Phase-locked-loop

Search Result 157, Processing Time 0.024 seconds

New Configuration of a PLDRO with an Interconnected Dual PLL Structure for K-Band Application

  • Jeon, Yuseok;Bang, Sungil
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.3
    • /
    • pp.138-146
    • /
    • 2017
  • A phase-locked dielectric resonator oscillator (PLDRO) is an essential component of millimeter-wave communication, in which phase noise is critical for satisfactory performance. The general structure of a PLDRO typically includes a dual loop of digital phase-locked loop (PLL) and analog PLL. A dual-loop PLDRO structure is generally used. The digital PLL generates an internal voltage controlled crystal oscillator (VCXO) frequency locked to an external reference frequency, and the analog PLL loop generates a DRO frequency locked to an internal VCXO frequency. A dual loop is used to ease the phase-locked frequency by using an internal VCXO. However, some of the output frequencies in each PLL structure worsen the phase noise because of the N divider ratio increase in the digital phase-locked loop integrated circuit. This study examines the design aspects of an interconnected PLL structure. In the proposed structure, the voltage tuning; which uses a varactor diode for the phase tracking of VCXO to match with the external reference) port of the VCXO in the digital PLL is controlled by one output port of the frequency divider in the analog PLL. We compare the proposed scheme with a typical PLDRO in terms of phase noise to show that the proposed structure has no performance degradation.

Improved DC Offset Error Compensation Algorithm in Phase Locked Loop System

  • Park, Chang-Seok;Jung, Tae-Uk
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1707-1713
    • /
    • 2016
  • This paper proposes a dc error compensation algorithm using dq-synchronous coordinate transform digital phase-locked-loop in single-phase grid-connected converters. The dc errors are caused by analog to digital conversion and grid voltage during measurement. If the dc offset error is included in the phase-locked-loop system, it can cause distortion in the grid angle estimation with phase-locked-loop. Accordingly, recent study has dealt with the integral technique using the synchronous reference frame phase-locked-loop method. However, dynamic response is slow because it requires to monitor one period of grid voltage. In this paper, the dc offset error compensation algorithm of the improved response characteristic is proposed by using the synchronous reference frame phase-locked-loop. The simulation and the experimental results are presented to demonstrate the effectiveness of the proposed dc offset error compensation algorithm.

A study on the Dual Digital Phase Locked Loop (Dual-Digital Phase-Locked Loop에 관한 연구)

  • 김수일;이상범;성상기;김중태;최승철
    • Proceedings of the Korean Institute of Communication Sciences Conference
    • /
    • 1987.04a
    • /
    • pp.230-233
    • /
    • 1987
  • A Dual Disital Phase Locked Loop is analyzeddesigned and tested. Two specific confisurations are considered generations second and thisrd order DPLL’s and it is found using a computer simulation and verified therretically . As a result of computer simulation the characteristcof designed I-Dullis better than the at of P-DPLL or C-Dull

  • PDF

A Phase-Locked Loop with Embedded Analog-to-Digital Converter for Digital Control

  • Cha, Soo-Ho;Jeong, Chun-Seok;Yoo, Chang-Sik
    • ETRI Journal
    • /
    • v.29 no.4
    • /
    • pp.463-469
    • /
    • 2007
  • A phase-locked loop (PLL) is described which is operable from 0.4 GHz to 1.2 GHz. The PLL has basically the same architecture as the conventional analog PLL except the locking information is stored as digital code. An analog-to-digital converter is embedded in the PLL, converting the analog loop filter output to digital code. Because the locking information is stored as digital code, the PLL can be turned off during power-down mode while avoiding long wake-up time. The PLL implemented in a 0.18 ${\mu}m$ CMOS process occupies 0.35 $mm^2$ active area. From a 1.8 V supply, it consumes 59 mW and 984 ${\mu}W$ during the normal and power-down modes, respectively. The measured rms jitter of the output clock is 16.8 ps at 1.2 GHz.

  • PDF

Digitally controlled phase-locked loop with tracking analog-to-digital converter (Tracking analog-to-digital 변환기를 이용한 digital phase-locked loop)

  • Cha, Soo-Ho;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.9 s.339
    • /
    • pp.35-40
    • /
    • 2005
  • A digitally controlled phase-locked loop (DCPLL) is described. The DCPLL has basically the same structure as a conventional analog PLL except for a tracking analog-to-digital converter (ADC). The tracking ADC generates the control signal for voltage controlled oscillator. Since the DCPLL employs neither digitally controlled oscillator nor time-to-digital converter-the key building blocks of digital PLL (DPLL), there is no need for the 03de-off between jitter, power consumption and silicon area. The DCPLL was implemented in a $0.18\mu$m CMOS process and the active area is 1mm $\times$0.35 mm The DCPLL consumes S9mW during the normal opuation and $984\{mu}W$ during the power-down mode from a 1.8V supply. The DCPLL shows 16.8ps ms jitter.

Design of Digital Phase-locked Loop based on Two-layer Frobenius norm Finite Impulse Response Filter (2계층 Frobenius norm 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • Sin Kim;Sung Shin;Sung-Hyun You;Hyun-Duck Choi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.1
    • /
    • pp.31-38
    • /
    • 2024
  • The digital phase-locked loop(DPLL) is one of the circuits composed of a digital detector, digital loop filter, voltage-controlled oscillator, and divider as a fundamental circuit, widely used in many fields such as electrical and circuit fields. A state estimator using various mathematical algorithms is used to improve the performance of a digital phase-locked loop. Traditional state estimators have utilized Kalman filters of infinite impulse response state estimators, and digital phase-locked loops based on infinite impulse response state estimators can cause rapid performance degradation in unexpected situations such as inaccuracies in initial values, model errors, and various disturbances. In this paper, we propose a two-layer Frobenius norm-based finite impulse state estimator to design a new digital phase-locked loop. The proposed state estimator uses the estimated state of the first layer to estimate the state of the first layer with the accumulated measurement value. To verify the robust performance of the new finite impulse response state estimator-based digital phase locked-loop, simulations were performed by comparing it with the infinite impulse response state estimator in situations where noise covariance information was inaccurate.

Fast Single-Phase All Digital Phase-Locked Loop for Grid Synchronization under Distorted Grid Conditions

  • Zhang, Peiyong;Fang, Haixia;Li, Yike;Feng, Chenhui
    • Journal of Power Electronics
    • /
    • v.18 no.5
    • /
    • pp.1523-1535
    • /
    • 2018
  • High-performance Phase-Locked Loops (PLLs) are critical for grid synchronization in grid-tied power electronic applications. In this paper, a new single-phase All Digital Phase-Locked Loop (ADPLL) is proposed. It features fast transient response and good robustness under distorted grid conditions. It is designed for Field Programmable Gate Array (FPGA) implementation. As a result, a high sampling frequency of 1MHz can be obtained. In addition, a new OSG is adopted to track the power frequency, improve the harmonic rejection and remove the dc offset. Unlike previous methods, it avoids extra feedback loop, which results in an enlarged system bandwidth, enhanced stability and improved dynamic performance. In this case, a new parameter optimization method with consideration of loop delay is employed to achieve a fast dynamic response and guarantee accuracy. The Phase Detector (PD) and Voltage Controlled Oscillator (VCO) are realized by a Coordinate Rotation Digital Computer (CORDIC) algorithm and a Direct Digital Synthesis (DDS) block, respectively. The whole PLL system is finally produced on a FPGA. A theoretical analysis and experiments under various distorted grid conditions, including voltage sag, phase jump, frequency step, harmonics distortion, dc offset and combined disturbances, are also presented to verify the fast dynamic response and good robustness of the ADPLL.

Digital Phase Locked Loop Method for a Single-Phase Photovoltaic Power Conditioning Systems (태양광 PCS의 계통 연계를 위한 Digital PLL 기법)

  • Yang, Seung-Dae;Shim, Jae-Hwe;Hong, Ki-Nam;Choy, Ick;Choi, Ju-Yeop;Lee, Sang-Cheol;Lee, Dong-Ha
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.87-88
    • /
    • 2011
  • 본 논문은 최근 빠른 속도로 성장하고 있는 신재생에너지 분야 중 태양광을 이용한 계통연계형 PV PCS의 PLL(Phase Locked Loop) 기법을 DSP로 처리할 수 있도록 디지털 논리회로로 구현하는 DPLL(Digital Phase Locked Loop) 기법을 제시하고 모델링과 시뮬레이션을 통하여 검증한다.

  • PDF

Low-Power, All Digital Phase-Locked Loop with a Wide-Range, High Resolution TDC

  • Pu, Young-Gun;Park, An-Soo;Park, Joon-Sung;Lee, Kang-Yoon
    • ETRI Journal
    • /
    • v.33 no.3
    • /
    • pp.366-373
    • /
    • 2011
  • In this paper, we propose a low-power all-digital phase-locked loop (ADPLL) with a wide input range and a high resolution time-to-digital converter (TDC). The resolution of the proposed TDC is improved by using a phase-interpolator and the time amplifier. The phase noise of the proposed ADPLL is improved by using a fine resolution digitally controlled oscillator (DCO) with an active inductor. In order to control the frequency of the DCO, the transconductance of the active inductor is tuned digitally. The die area of the ADPLL is 0.8 $mm^2$ using 0.13 ${\mu}m$ CMOS technology. The frequency resolution of the TDC is 1 ps. The DCO tuning range is 58% at 2.4 GHz and the effective DCO frequency resolution is 0.14 kHz. The phase noise of the ADPLL output at 2.4 GHz is -120.5 dBc/Hz with a 1 MHz offset. The total power consumption of the ADPLL is 12 mW from a 1.2 V supply voltage.

A Digital Phase-locked Loop design based on Minimum Variance Finite Impulse Response Filter with Optimal Horizon Size (최적의 측정값 구간의 길이를 갖는 최소 공분산 유한 임펄스 응답 필터 기반 디지털 위상 고정 루프 설계)

  • You, Sung-Hyun;Pae, Dong-Sung;Choi, Hyun-Duck
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.4
    • /
    • pp.591-598
    • /
    • 2021
  • The digital phase-locked loops(DPLL) is a circuit used for phase synchronization and has been generally used in various fields such as communication and circuit fields. State estimators are used to design digital phase-locked loops, and infinite impulse response state estimators such as the well-known Kalman filter have been used. In general, the performance of the infinite impulse response state estimator-based digital phase-locked loop is excellent, but a sudden performance degradation may occur in unexpected situations such as inaccuracy of initial value, model error, and disturbance. In this paper, we propose a minimum variance finite impulse response filter with optimal horizon for designing a new digital phase-locked loop. A numerical method is introduced to obtain the measured value interval length, which is an important parameter of the proposed finite impulse response filter, and to obtain a gain, the covariance matrix of the error is set as a cost function, and a linear matrix inequality is used to minimize it. In order to verify the superiority and robustness of the proposed digital phase-locked loop, a simulation was performed for comparison and analysis with the existing method in a situation where noise information was inaccurate.