• Title/Summary/Keyword: Digital Logic

Search Result 673, Processing Time 0.021 seconds

Signal Processing Logic Implementation for Compressive Sensing Digital Receiver (압축센싱 디지털 수신기 신호처리 로직 구현)

  • Ahn, Woohyun;Song, Janghoon;Kang, Jongjin;Jung, Woong
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.437-446
    • /
    • 2018
  • This paper describes the real-time logic implementation of orthogonal matching pursuit(OMP) algorithm for compressive sensing digital receiver. OMP contains various complex-valued linear algebra operations, such as matrix multiplication and matrix inversion, in an iterative manner. Xilinx Vivado high-level synthesis(HLS) is introduced to design the digital logic more efficiently. The real-time signal processing is realized by applying dataflow architecture allowing functions and loops to execute concurrently. Compared with the prior works, the proposed design requires 2.5 times more DSP resources, but 10 times less signal reconstruction time of $1.024{\mu}s$ with a vector of length 48 with 2 non-zero elements.

A Study on the Constructing the Function using Extension Edge Valued Graph (모서리값 확장 그래프를 사용한 함수구성에 관한연구)

  • Park, Chun-Myoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.4
    • /
    • pp.863-868
    • /
    • 2013
  • In recently years, many digital logic systems based on graph theory are analyzed and synthesized. This paper presented a method of constructing the function using edge valued extension graph which is based on graph theory. The graph is applied to a new data structure. from binary graph which is recently used in constructing the digital logic systems based on the graph theory. We discuss the mathematical background of literal and reed-muller expansion, and we discuss the edge valued extension graph which is the key of this paper. Also, we propose the algorithms which is the function derivation based on the proposed edge valued extension graph. That is the function minimization method of the n-variables m-valued functions and showed that the algorithm had the regularity with module by which the same blocks were made concerning about the schematic property of the proposed algorithm.

A Study on the Design of Low Power Digital PLL (저전력 디지털 PLL의 설계에 대한 연구)

  • Lee, Je-Hyun;Ahn, Tae-Won
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.1-7
    • /
    • 2010
  • This paper presents a low power digital PLL architecture and design for implementation of the PLL-based frequency synthesizers. In the proposed architecture, a wide band digital logic quadricorrelator is used for preliminary frequency detector and a narrow band digital logic quadricorrelator is used for final DCO control. Also, a circuit technique for reducing leakage current is adopted in order to minimize the standby mode power consumption of the deactivated block. The proposed digital PLL is designed and verified by MyCAD with MOSIS 1.8V $0.35{\mu}m$ CMOS technology, and the simulation results show that the power consumption can be lowered by more than 20%.

Two Phase Clocked Adiabatic Static CMOS Logic and its Logic Family

  • Anuar, Nazrul;Takahashi, Yasuhiro;Sekine, Toshikazu
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.10 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • This paper proposes a two-phase clocked adiabatic static CMOS logic (2PASCL) circuit that utilizes the principles of adiabatic switching and energy recovery. The low-power 2PASCL circuit uses two complementary split-level sinusoidal power supply clocks whose height is equal to $V_{dd}$. It can be directly derived from static CMOS circuits. By removing the diode from the charging path, higher output amplitude is achieved and the power consumption of the diode is eliminated. 2PASCL has switching activity that is lower than dynamic logic. We also design and simulate NOT, NAND, NOR, and XOR logic gates on the basis of the 2PASCL topology. From the simulation results, we find that 2PASCL 4-inverter chain logic can save up to 79% of dissipated energy as compared to that with a static CMOS logic at transition frequencies of 1 to 100 MHz. The results indicate that 2PASCL technology can be advantageously applied to low power digital devices operated at low frequencies, such as radio-frequency identifications (RFIDs), smart cards, and sensors.

Analysis of the Logic Minimization in the Design of 74LS49 and 74LS47 BCD-to-Seven-Segment Decoders (74LS49와 74LS49의 디자인에 사용된 로직최소화에 대한 분석)

  • You, Jun-Bok;Chung, Tea-Sang
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.784-787
    • /
    • 1999
  • The 74LS49 and 74LS47 chips are MSI circuits and are used for decoding the BCD input and driving seven-segment displays. The logic of these chips are often used not only as component chips in the commercial digital systems, but are used as library components in fairly complicated ASIC designs. Thus, the understanding of the logic characteristics of these chips is beneficial for future applications. It was analyzed reversely that the design of these chips includes a special logic minimization technique, which neither documented nor reported. This paper is to analyze the function of the logic and the special minimization technique adapted in the design of 74LS49 and 74LS47 chips.

  • PDF

A data structure and algorithm for MOS logic-with-timing simulation (MOS 로직 및 타이밍 시뮬레이션을 위한 데이타구조 및 알고리즘)

  • 공진흥
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.33A no.6
    • /
    • pp.206-219
    • /
    • 1996
  • This paper describes a data structure and evaluation algorithm to improve the perofmrances MOS logic-with-timing simulation in computation and accuracy. In order to efficiently simulate the logic and timing of driver-load networks, (1) a tree data structure to represent the mutual interconnection topology of switches and nodes in the driver-lod network, and (2) an algebraic modeling to efficiently deal with the new represetnation, (3) an evaluation algorithm to compute the linear resistive and capacitive behavior with the new modeling of driver-load networks are developed. The higher modeling presented here supports the structural and functional compatibility with the linear switch-level to simulate the logic-with-timing of digital MOS circuits at a mixed-level. This research attempts to integrate the new approach into the existing simulator RSIM, which yield a mixed-klevel logic-with-timing simulator MIXIM. The experimental results show that (1) MIXIM is a far superior to RSIM in computation speed and timing accuracy; and notably (2) th etiming simulation for driver-load netowrks produces the accuracy ranged within 17% with respect ot the analog simulator SPICE.

  • PDF

Study for Digital Logic Circuit Using Resonant Tunneling Diodes (공명투과다이오드를 이용한 논리회로의 응용 연구)

  • 추혜용;박평운;이창희;이일항
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.2
    • /
    • pp.75-80
    • /
    • 1994
  • AlAs/GaAs/AlAs RTDs(Resonant Tunneling Diodes) are fabricated and current-voltage properties of them are measured. At room temperature, peak to valley ratio is 2.4 NOT.AND.OR logic gates and Flip-Flop are fabricated using the bistable characteristics of RTDs. Although NOT.AND.OR logic gates need 5~8 transistors. only one RTD is sufficient to fabricate the logic gates. Since the switching time is very short(<10$^12$sec), it is possible to drive the semiconductor circuits fast and integrate them very large. And it is convinced the possibility of integrating RTDs to multilevel logic circuits by observing two peaks of similar current in the serial connection of two RTDs.

  • PDF

The timing do-skew modeling and design in a high speed digital system (고속 디지털 시스템에서 전달 시간차의 보정 모델링 및 구현)

  • Oh, Kwang-Suhk
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.601-604
    • /
    • 2002
  • In this paper, the timing do-skew modeling for a high speed logic tester channels is developed. The time delay of each channel in a logic tester are different from other channels and it can produce timing error in a test. To get the best timing accuracy in the test with a logic tester, the timing skew must be compensated. The timing skew of channels is due to the difference of time delay of pin-electronics devices composing channels and length of metal line placed on PCB. The expected timing difference of channels can be calculated according to the specifications of pin electronics devices and strip line modeling of PCB. With the calculated delay time, the timing skew compensation circuit has been designed. With the timing skew compensation circuit, the timing calibration of a logic tester can be peformed easily and automatically without other time measuring instruments. The calibration method can then be directly applied to logic testers in mass production lines.

  • PDF

Precise Digital Tracking Controller for CNC Machine Tools

  • Jeung, Dong-Hyo;Shin, Doo-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2001.07e
    • /
    • pp.58-61
    • /
    • 2001
  • The purpose of this paper is a fuzzy logic controller for XY positioning system. The overall control system consists of three parts, the position controller, the speed controller, the fuzzy logic controller. Precise tracking is achieved by fuzzy logic controller. In practice, such systems contain many uncertainties. Therefore, the XY positioning system must receive and evaluate the motion of all axis for a better contouring accuracy. Cross coupled controller utilizes all axis position error information simultaneously to produce accurate contours. However, the existing Cross coupled controllers cannot overcome friction, backlash and parameter variation. So, we propose a fuzzy logic controller of XY positioning system. Experimental results show that the proposed fuzzy logic controller is effective to improve the contouring accuracy of XY positioning system.

  • PDF

New Start-Up Logic for Microturbine by Constant Power Control under an Extremely Low Temperature (극저온 환경에서의 정 출력 제어를 적용한 마이크로터빈의 새로운 시동 로직 개발)

  • Rho, Min-Sik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1249-1255
    • /
    • 2006
  • This paper presents a constant power control logic for perfect starting a microtubine in vehicle. Under extremely low temperature, performance of the start-up system is severely dropped than that of room temperature because of increasing of load of mechanical parts including engine core and drop of the lead-acid battery capacity. Unfortunately, performance drop of lead-acid battery makes severe problems that cause a malfunction of fuel and lubrication system and power fail of digital devices. So we propose the new start-up logic by constant output power control of lead-acid battery using PWM inverter controller for preventing above problems and keeping good performance of start-up system for microturbine. Also, we prove usefulness of new start-up logic through experimental results under $-32^{\circ}C$ ambient temperature.