• Title/Summary/Keyword: Digital Frequency Synthesizer

Search Result 124, Processing Time 0.028 seconds

A Clock System including Low-power Burst Clock-data Recovery Circuit for Sensor Utility Network (Sensor Utility Network를 위한 저전력 Burst 클록-데이터 복원 회로를 포함한 클록 시스템)

  • Song, Changmin;Seo, Jae-Hoon;Jang, Young-Chan
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.858-864
    • /
    • 2019
  • A clock system is proposed to eliminate data loss due to frequency difference between sensor nodes in a sensor utility network. The proposed clock system for each sensor node consists of a bust clock-data recovery (CDR) circuit, a digital phase-locked loop outputting a 32-phase clock, and a digital frequency synthesizer using a programmable open-loop fractional divider. A CMOS oscillator using an active inductor is used instead of a burst CDR circuit for the first sensor node. The proposed clock system is designed by using a 65 nm CMOS process with a 1.2 V supply voltage. When the frequency error between the sensor nodes is 1%, the proposed burst CDR has a time jitter of only 4.95 ns with a frequency multiplied by 64 for a data rate of 5 Mbps as the reference clock. Furthermore, the frequency change of the designed digital frequency synthesizer is performed within one period of the output clock in the frequency range of 100 kHz to 320 MHz.

Multi-Function Compact Frequency Synthesizer for Ka Band Seeker (Ka 대역 탐색기용 다기능 초소형 주파수 합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.926-934
    • /
    • 2016
  • In this paper, we designed a compact frequency synthesizer with multi-function for Ka-band seeker. DDS(Direct Digital Synthesizer) is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and frequency up-converter are integrated in one module. Proposed frequency synthesizer provides precise detection and tracking waveform for low and high speed targets. It is observed that fabricated synthesizer performs $0.45{\mu}sec$ frequency switching time and -93.69 dBc/Hz phase noise at offset 1 kHz. The size of the synthesizer is kept within 120 mm width, 120 mm length and 22 mm height.

A Frequency Synthesizer for Ka band compact Radar using DDS (DDS를 이용한 Ka 대역 소형 레이다용 주파수합성기)

  • An, Se-Hwan;Lee, Man-Hee;Kim, Hong-Rak;Kwon, Jun-Beom;Choi, Young-Rak;Kim, Jong-Ho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.51-57
    • /
    • 2017
  • In this paper, we designed a frequency synthesizer using DDS (Direct Digital Synthesizer) for Ka-band compact Radar. DDS is applied to generate various waveform and to cover high-speed frequency sweep. In order to reduce size, waveform generator and Ka band frequency up-converter are integrated in one module. Proposed frequency synthesizer provides LFM(Linear Frequency Modulation) waveform and Phase modulated FMCW (Frequency Modulation Continuous Wave) waveform. It is observed that fabricated synthesizer performs $0.191{\mu}sec$ frequency switching time and -89.16 dBc/Hz phase noise at offset 1 kHz.

Implementation of Digital Frequency Synthesizer for High Speed Frequency Hopping (DDS를 이용한 고속 주파수 Hopping용 디지털 주파수 합성기 구현)

  • Kim Young-Wan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2006.05a
    • /
    • pp.607-610
    • /
    • 2006
  • The Digital Frequency Synthesizer(DFS) that generates the wideband signal with hish speed frequency hopping rate and high frequency resolution characteristics was implemented in this paper. The DFS was applied as local oscillator for direct frequency conversion IF modules of DVB-RCS, which directly generates the transmission immediate frequency signal by using DDS and wideband PLL technologies. The DDS technology provides high speed frequency hopping rate and high frequency resolution characteristics, which ate also the DVB-RCS requirement. The wideband PLL technology also provides the wideband signal generation, which is a necessity for direct frequency conversion modules. The implemented DFS provide the spurious suppression characteristic of -50 dBc, frequency resolution of 0.233 Hz and frequency hopping rate of 125 ns, respectively. Also the DFS represent the amplitude flatness of 3 dB and less in the pass-band and phase noise characteristic of -75 dBc/Hz at 1 kHz frequency offset.

  • PDF

Low Phase Noise Design and Implementation of X -Band Frequency Synthesizer for Radar Receiver (레이다 수신기용 X-밴드 주파수 합성기의 저 위상잡음설계 및 구현)

  • So, Won-Wook;Kang, Yeon-Duk;Lee, Taek-Kyung
    • Journal of Advanced Navigation Technology
    • /
    • v.2 no.1
    • /
    • pp.22-33
    • /
    • 1998
  • In the coherent-on-receiver radar system using the magnetron source, frequency synthesizer is employed as a STALO(Stable Local Oscillator) to keep the intermediate frequency stable. In this paper, X-band(8.4GHz~9.7GHz) single loop frequency synthesizer is designed and implemented by an indirect frequency synthesis technique. Phase comparison is performed by a digital PLL(Phase-Locked Loop) chip and the loop filter is designed for the low phase noise. The effects of loop component characteristics on the output phase noise are analyzed for single loop structures, and the calculated results are compared with the measured data.

  • PDF

Direct digital frequency synthesizer using ROM reduction method (ROM 축소를 이용한 직접디지털 주파수 합성기법)

  • Ahn, Young-Nam;Kim, Chong-Il
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2009.10a
    • /
    • pp.401-404
    • /
    • 2009
  • In this paper, a new method to reduce the size of ROM in the direct digital frequency synthesizer(DDFS) is proposed. The new parallel ROM compression method can reduce the ROM size by using the two ROM. The quantized value of sine is stored by the quantized-ROM and the differential ROM. To reduce the ROM size, we use the differential quantization technique with this two ROM. So the total size of the ROM in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 67.5% is achieved by this method. Also, the power consumption is affected mostly by this ROM reduction.

  • PDF

A Styudy on the Implementation of Frequency Synthesizer for the Fast Frequency Hopping Spread Spectrum Communication system (대역 확산 통신방식에서 고속 주파수 호핑 시스템에 사용될 주파수 합성기의 실현에 관한 연구)

  • Kim, W.H.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.51-64
    • /
    • 1988
  • The frequency synthesizer thar has very short transient time is the key to construct the Fast Frequency Hopping(FFH) system. A Direct Digital Frequency Synthesizer(DDFS) whose transient time is in the nS range has been implemented and the performance of which has been examined through this paper. And by considering the hopping characteristic it is confirmed that the DDFS is suitable for the FFH system. Finally an improvement method which can greatly enhances the SNR with the state-of-the-art techniques and simplifies the system design is presented.

  • PDF

A practial design of direct digital frequency synthesizer with multi-ROM configuration (병렬 구조의 직접 디지털 주파수 합성기의 설계)

  • 이종선;김대용;유영갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.12
    • /
    • pp.3235-3245
    • /
    • 1996
  • A DDFS(Direct Digital Frequency Synthesizer) used in spread spectrum communication systems must need fast switching speed, high resolution(the step size of the synthesizer), small size and low power. The chip has been designed with four parallel sine look-up table to achieve four times throughput of a single DDFS. To achieve a high processing speed DDFS chip, a 24-bit pipelined CMOS technique has been applied to the phase accumulator design. To reduce the size of the ROM, each sine ROM of the DDFS is stored 0-.pi./2 sine wave data by taking advantage of the fact that only one quadrant of the sine needs to be stored, since the sine the sine has symmetric property. And the 8 bit of phase accumulator's output are used as ROM addresses, and the 2 MSBs control the quadrants to synthesis the sine wave. To compensate the spectrum purity ty phase truncation, the DDFS use a noise shaper that structure like a phase accumlator. The system input clock is divided clock, 1/2*clock, and 1/4*clock. and the system use a low frequency(1/4*clock) except MUX block, so reduce the power consumption. A 107MHz DDFS(Direct Digital Frequency Synthesizer) implemented using 0.8.mu.m CMOS gate array technologies is presented. The synthesizer covers a bandwidth from DC to 26.5MHz in steps of 1.48Hz with a switching speed of 0.5.mu.s and a turing latency of 55 clock cycles. The DDFS synthesizes 10 bit sine waveforms with a spectral purity of -65dBc. Power consumption is 276.5mW at 40MHz and 5V.

  • PDF

Design and Implementation of Wideband Digital Frequency Synthesizer for DVB-RCS (DVB-RCS 전송을 위한 광대역 디지털 주파수 합성기 설계 및 구현)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.223-228
    • /
    • 2007
  • The Digital Frequency Synthesizer(DFS) that generates the wideband signal with high speed frequency hopping rate and high frequency resolution characteristics was designed and implemented in this paper The DFS was applied as local oscillator for direct frequency conversion IF modules of DVB-RCS, which directly generates the transmission immediate frequency signal by using DDS and wideband PLL technologies. The DDS technology provides high speed frequency hopping rate and high frequency resolution characteristics, which are also the DVB-RCS requirement. The wideband PLL technology also provides the wideband signal generation, which is a necessity for direct frequency conversion modules. The implemented DFS provides the spurious suppression characteristic of -50 dBc and less, frequency resolution of 0.233 Hz and frequency hopping rate of 125 ns, respectively. Also the DFS represents the amplitude flatness of 3 dB and less in the pass-band, and phase noise characteristic of -75 dBc/Hz at 1 kHz frequency offset.

A Direct Digital Frequency Synthesizer Using Quantization ROM And Error ROM (양자화롬과 오차롬을 사용한 직접 디지털 주파수 합성기)

  • 양병도;성기혁;김영준;김이섭
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.104-110
    • /
    • 2003
  • A new direct digital frequency synthesizer (DDFS) is proposed. The DDFS uses a new ROM compression method that divides each ROM in the conventional DDFS into two ROMs (a quantization ROM and an error ROM). The total size of the ROMs in the proposed DDFS is significantly reduced compared to the original ROM. The ROM compression ratio of 78 is achieved for a DDFS with 12bit output data. A DDFS with 12bit output data for sine function was implemented in a 0.35${\mu}{\textrm}{m}$ CMOS technology. The power dissipation is 9.56㎽ at 100MHz with 3.3V and the maximum operating clock frequency is 330MHz.