• 제목/요약/키워드: Differential-difference equation

검색결과 195건 처리시간 0.025초

ENTIRE SOLUTIONS OF DIFFERENTIAL-DIFFERENCE EQUATION AND FERMAT TYPE q-DIFFERENCE DIFFERENTIAL EQUATIONS

  • CHEN, MIN FENG;GAO, ZONG SHENG
    • 대한수학회논문집
    • /
    • 제30권4호
    • /
    • pp.447-456
    • /
    • 2015
  • In this paper, we investigate the differential-difference equation $(f(z+c)-f(z))^2+P(z)^2(f^{(k)}(z))^2=Q(z)$, where P(z), Q(z) are nonzero polynomials. In addition, we also investigate Fermat type q-difference differential equations $f(qz)^2+(f^{(k)}(z))^2=1$ and $(f(qz)-f(z))^2+(f^{(k)}(z))^2=1$. If the above equations admit a transcendental entire solution of finite order, then we can obtain the precise expression of the solution.

A NEW WAY TO FIND THE CONTROLLING FACTOR OF THE SOLUTION TO A DIFFERENCE EQUATION

  • Park, Seh-Ie
    • 대한수학회지
    • /
    • 제36권5호
    • /
    • pp.833-846
    • /
    • 1999
  • In this paper, we will study the relationship between the controlling factor of the solution to a difference equation and the solution of the corresponding differential equation. Many times the controlling factors are the same. But even the controlling factor of the two solutions may be different, we will discover a way to compute, for first order non-linear equations, the controlling factor of the solution to the difference equation using the solution of the differential equation.

  • PDF

The Three-Dimensional Partial Differential Equation with Constant Coefficients of Time-Delay of Alternating Direction Implicit Format

  • Chu, QianQian;Jin, Yuanfeng
    • Journal of Information Processing Systems
    • /
    • 제14권5호
    • /
    • pp.1068-1074
    • /
    • 2018
  • In this paper, we consider the delay partial differential equation of three dimensions with constant coefficients. We established the alternating direction difference scheme by the standard finite difference method, gave the order of convergence of the format and the expression of the difference scheme truncation errors.

A NOTE ON MEROMORPHIC SOLUTIONS OF COMPLEX DIFFERENTIAL-DIFFERENCE EQUATIONS

  • Qi, Xiaoguang;Yang, Lianzhong
    • 대한수학회보
    • /
    • 제56권3호
    • /
    • pp.597-607
    • /
    • 2019
  • In this article, we consider properties of transcendental meromorphic solutions of the complex differential-difference equation $$P_n(z)f^{(n)}(2+{\eta}_n)+{\cdots}+P_1(z)f^{\prime}(z+{\eta}_1)+P_0(z)f(z+{\eta}_0)=0$$, and its non-homogeneous equation. Our results extend earlier results by Liu et al. [9].

ON ENTIRE SOLUTIONS OF NONLINEAR DIFFERENCE-DIFFERENTIAL EQUATIONS

  • Wang, Songmin;Li, Sheng
    • 대한수학회보
    • /
    • 제50권5호
    • /
    • pp.1471-1479
    • /
    • 2013
  • In this paper, we study the non-existence of finite order entire solutions of nonlinear differential-difference of the form $$f^n+Q(z,f)=h$$, where $n{\geq}2$ is an integer, $Q(z,f)$ is a differential-difference polynomial in $f$ with polynomial coefficients, and $h$ is a meromorphic function of order ${\leq}1$.

ON MEROMORPHIC SOLUTIONS OF NONLINEAR PARTIAL DIFFERENTIAL-DIFFERENCE EQUATIONS OF FIRST ORDER IN SEVERAL COMPLEX VARIABLES

  • Qibin Cheng;Yezhou Li;Zhixue Liu
    • 대한수학회보
    • /
    • 제60권2호
    • /
    • pp.425-441
    • /
    • 2023
  • This paper is concerned with the value distribution for meromorphic solutions f of a class of nonlinear partial differential-difference equation of first order with small coefficients. We show that such solutions f are uniquely determined by the poles of f and the zeros of f - c, f - d (counting multiplicities) for two distinct small functions c, d.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • 제27권1_2호
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

ON PERIODICIZING FUNCTIONS

  • Naito Toshiki;Shin Jong-Son
    • 대한수학회보
    • /
    • 제43권2호
    • /
    • pp.253-263
    • /
    • 2006
  • In this paper we introduce a new concept, a 'periodicizing' function for the linear differential equation with the periodic forcing function. Moreover, we construct this function, which is closely related with the solution of a difference equation and an indefinite sum. Using this function, we can obtain a representation of solutions from which we see immediately the asymptotic behavior of the solutions.