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A NOTE ON MEROMORPHIC SOLUTIONS OF COMPLEX

DIFFERENTIAL-DIFFERENCE EQUATIONS

Xiaoguang Qi and Lianzhong Yang

Abstract. In this article, we consider properties of transcendental mero-

morphic solutions of the complex differential-difference equation

Pn(z)f (n)(z + ηn) + · · · + P1(z)f ′(z + η1) + P0(z)f(z + η0) = 0,

and its non-homogeneous equation. Our results extend earlier results by

Liu et al. [9].

1. Introduction

Although as early as thirty years ago, S. Shimomura [14] and N. Yanagihara
[16, 17] et al. started a preliminary study of complex difference equations, the
lack of vigorous research tools led to the slow development of subsequent re-
search. Until 2006, Chiang-Feng [1] and Halburd-Korhonen [6] independently
proved the difference analogue of the lemma on logarithmic derivative, Nevan-
linna theory stared to be a powerful tool to investigate complex differences
and difference equations, which results in the rapid development in this field.
Furthermore, complex differences and difference equations have attracted more
and more attentions in recent ten years. Many results on the complex difference
equations are rapidly obtained until now, please refer to [2] for details.

The study of complex differential-difference equations can be traced back to
Naftalevich’s research. Using operator theory and iteration method, Naftale-
vich [12] ever considered the meromorphic solutions on complex differential-
difference equations. However, there are few investigations on complex differ-
ential-difference field using Nevanlinna theory. Therefore, the relevant results
are very limited, the reader is invited to see [3, 7, 8, 10,13].

In this paper, we assume that the reader is familiar with the fundamental
results and the standard notations of the Nevalinna theory of meromorphic
functions (e.g. see [18]). We use σ(f) to denote the order of a meromorphic
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function f(z), and λ(f), λ( 1
f ) to denote the exponent of convergence of zeros

and poles of f(z), respectively.
Recently, Liu and Song [9] considered the exponent of convergence of zeros

and the order for entire solutions of the linear differential-difference equation

(1.1) Pn(z)f (n)(z + ηn) + · · ·+ P1(z)f ′(z + η1) + P0(z)f(z + η0) = 0

and its non-homogeneous equation

(1.2) Pn(z)f (n)(z + ηn) + · · ·+ P1(z)f ′(z + η1) + P0(z)f(z + η0) = Q(z),

where η0, . . . , ηn are distinct complex constants. They got the following results.

Theorem A. Let P0(z), P1(z), . . . , Pn(z)(6≡ 0) be polynomials. Suppose that
f(z) is a transcendental entire solution with finite order of (1.1). Then λ(f −
a) ≥ σ(f)− 1 for every finite value a.

Theorem B. Let Q(z) and Pj(z) (j = 0, 1, 2, . . . , n) be polynomials such that
Pn(z)Q(z) 6≡ 0 in (1.2). If f(z) is a transcendental entire solution with finite
order of (1.2), then λ(f) = σ(f). If Q(z) 6≡ dP0(z), then λ(f − d) = σ(f),
where d is a constant.

Related to the theorems above, a natural question is: what happens if the
coefficients of equations (1.1) and (1.2) are meromorphic functions other than
polynomials? Concerning this question, we obtain following results.

Theorem 1.1. Let Pj(z) (j = 0, 1, . . . , n) be meromorphic functions, and set
σ = max{σ(Pj)}. If f(z)( 6≡ 0) is a finite order transcendental meromorphic
solution of equation (1.1), then we have

(1) if σ ≥ λf , then σ ≥ σ(f)− 1;

(2) if σ < λf , then λf ≥ σ(f)− 1, where λf = max{λ(f), λ
(

1
f

)
}.

Remark 1. (i) From [11], we know equation (1.1) has no properly meromorphic
solutions when Pj(z) are constants. However, equation (1.1) can admit properly
meromorphic solutions when Pj(z) are meromorphic functions. For example,

f(z) = ez

z is a meromorphic solution of

f ′(z + 2πi)− z(z + 2πi− 1)

(z + 2πi)2
f(z) = 0.

(ii) The equation

1

4(z+2)2+2
f
′′
(z+2)+

1

2z+2
(ez+e−z)f ′(z+1)−(e4z+4+e3z+1+ez+1)f(z) = 0

has a solution f(z) = ez
2

. Here, σ(f) = 2, λf = 0 and σ = 1. The equation
and its solution satisfy Theorem 1.1(1).

Moreover, the meromorphic function f(z) = ez
2 −1 is a solution of equation

1

4(z + 2)2 + 2
f
′′
(z + 2)− 1

2z + 2
e2z+3f ′(z + 1) = 0.
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Here, 2 = λf > σ = 1 and λf > σ(f) − 1 = 1. The equation and its solution
satisfy Theorem 1.1(2) as well.

Theorem 1.2. Let Pj(z) (j = 0, 1, . . . , n), Q(z) be meromorphic functions
such that Q(z) 6≡ 0. Suppose that f(z) is an admissible finite order transcen-
dental meromorphic solution of equation (1.2) in the sense that T (r, Pj) =
S(r, f) and T (r,Q) = S(r, f). Then, we have λ(f) = σ(f). Furthermore, if
Q(z) 6≡ dP0(z), then λ(f − d) = σ(f), where d is a constant.

Remark 2. (i) Checking the proof of Theorem 1.2, we see, whether or not
Q(z) 6≡ 0 is established, Theorem 1.2 holds, as long as the condition Q(z) 6≡
dP0(z) holds.

(ii) The equation

1

4(z + 2)2 + 2
f
′′
(z + 2) +

1

2z + 2
(ez + e−z)f ′(z + 1)

− (e4z+4 + e3z+1 + ez+1)f(z)

=
1

z
(e4z+4 + e3z+1 + ez+1) +

1

2(z + 1)3
(ez + e−z)− 2

4(z + 2)5 + 2(z + 2)3

has a solution f(z) = ez
2 − 1

z . Here,

Q(z) =
1

z
(e4z+4 + e3z+1 + ez+1) +

1

2(z + 1)3
(ez + e−z)− 2

4(z + 2)5 + 2(z + 2)3

such that T (r,Q) = S(r, f). Moreover, it is easy to verify that P0(z) =
−(e4z+4 + e3z+1 + ez+1) satisfies Q(z) 6≡ dP0(z). We see λ(f) = λ(f − d) =
σ(f) = 2. The equation and its solution satisfy Theorem 1.2.

Theorem 1.3. Let Pj(z) (j = 0, 1, . . . , n), Q(z) be meromorphic functions
such that Q(z) 6≡ 0. Suppose that f(z) is an admissible finite order transcen-
dental meromorphic solution of equation (1.2). If σ(f) > σ(Q), then we have
λf = σ(f).

In [15], Wu and Zheng obtained the following result.

Theorem C. Let Aij(z) (i = 0, 1, . . . , n; j = 0, 1, . . . ,m) be meromorphic
functions such that there exists an integer l (0 ≤ l ≤ n) satisfying

max{σ(Aij), (i, j) 6= (l, 0)} < σ(Al0) <∞, δ(∞, Al0) > 0.

If f(z) ( 6≡ 0) is a meromorphic solution of
n∑
i=0

m∑
j=0

Aijf
(j)(z + ci) = 0,

then we have σ(f) ≥ σ(Al0) + 1. Here, we define

δ(a, f) = lim inf
r→∞

m(r, 1
f−a )

T (r, f)
,

where a(z) is a small function related to f(z).
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From Theorem C, we see:

Corollary 1.4. If

max{σ(Pj)} < σ(P0) <∞, δ(∞, P0) > 0, j = 1, 2, . . . , n.

Then all meromorphic solutions of (1.1) satisfy σ(f) ≥ σ(P0) + 1.

Naftalevich [12], Liu-Song [9] discussed some properties of the following
equation

(1.3) f(z + c) = eP (z)f (k)(z),

namely,

(1.4) f(z + c)− eP (z)f (k)(z) = 0,

where c is a non-zero constant and k is a positive integer. On one hand, we
consider the non-homogeneous equation of (1.4)

(1.5) f(z + c)− eP (z)f (k)(z) = Q(z).

We obtain:

Theorem 1.5. Let P (z), Q(z) 6≡ 0 be polynomials, and P (z) be not a constant.
If f(z) is a finite order transcendental entire solution of (1.5), then we have
σ(f) ≥ deg (P (z)) and λ(f) = σ(f).

On the other hand, we see, equation (1.3) can be rewritten as

(1.6) f (k)(z)− e−P (z)f(z + c) = 0.

Noting equation (1.6), a natural question is: what will happen if e−P (z) is
replaced with a polynomial of exponential functions. Furthermore, we doubt if
condition “ max{σ(Pj)} < σ(P0) < ∞” in Corollary 1.4 is necessary. Indeed,
from Remark 1(ii), we see max{σ(Pj)} = σ(P0) = 1, the conclusion of Corollary
1.4 holds as well. Due to above considerations, we investigate the following
differential-difference equation:

(1.7) f (n)(z + ηn) +

n−1∑
j=0

{Pj(eA(z)) +Qj(e
−A(z))}f (j)(z + ηj) = 0,

where Pj(z) and Qj(z) (j = 0, 1, . . . , n − 1) are polynomials in z, A(z) is a
polynomial of degree m. We obtain the following result.

Theorem 1.6. Let Pj(z) and Qj(z) (j = 0, 1, . . . , n−1) be polynomials, A(z) =
amz

m + am−1z
m−1 + · · ·+ a0, (am 6= 0) be a non-constant polynomial. If

deg (P0) > deg (Pj) or deg (Q0) > deg (Qj), j = 1, . . . , n− 1.

Then, each meromorphic solution f(z)( 6≡ 0) with finite order of the equation

(1.7) satisfies σ(f) ≥ m+ 1. Moreover, we have max{λ(f −a), λ
(

1
f

)
} = σ(f),

where a is non-zero constant.
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2. Some lemmas

Lemma 2.1 ([6, Corollary 2.2]). Let f(z) be a meromorphic function of finite
order. Then

m

(
r,
f(z + c)

f(z)

)
+m

(
r,

f(z)

f(z + c)

)
= S(r, f).

Lemma 2.2 ([1, Corollary 8.3]). Let η1, η2 be two arbitrary complex numbers,
and let f(z) be a meromorphic function of finite order σ. Let ε > 0 be given
constants, then there exits a subset E ⊂ (1,∞) of finite logarithmic measure,
for all |z| = r /∈ [0, 1] ∪ E, we have

exp{−rσ−1+ε} ≤
∣∣∣∣f(z + η1)

f(z + η2)

∣∣∣∣ ≤ exp{rσ−1+ε}.

Lemma 2.3 ([4]). Let f(z) be a transcendental meromorphic function of finite
order σ, and let ε > 0 be a given constant. Then there exists a set H ⊂ (1,∞)
that has finite logarithmic measure, such that for all z satisfying |z| = r 6∈
H ∪ [0, 1], and for all k, j, 0 ≤ j < k, we have

(2.1)

∣∣∣∣f (k)(z)f (j)(z)

∣∣∣∣ ≤ r(k−j)(σ−1+ε).
Lemma 2.4 ([5, Lemma 5]). Let g : (0,+∞) → R, h : (0,+∞) → R be
monotone increasing functions such that g(r) ≤ h(r) outside of an exceptional
set E of finite logarithmic measure. Then, for any α > 1, there exists r0 > 0
such that g(r) ≤ h(αr) hold for all r > r0.

Lemma 2.5 ([1, Lemma 5.1]). Let f(z) be a transcendental meromorphic func-
tion of finite order σ, and let ε > 0 be a given constant. Then

T (r, f(z + c)) = T (r, f(z)) +O(rσ−1+ε) +O(log r).

Lemma 2.6 ([18, Theorem 1.51]). Suppose that fj(z) (j = 1, . . . n) (n ≥ 2) are
meromorphic functions and gj(z) (j = 1, . . . , n) are entire functions satisfying
the following conditions.

(1)
∑n
j=1 fj(z)e

gj(z) ≡ 0.

(2) 1 ≤ j < k ≤ n, gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n.
(3) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n,

T (r, fj) = o{T (r, egh−gk)}, r →∞, r 6∈ E,

where E ⊂ (1,∞) is of finite linear measure.

Then fj(z) ≡ 0.

Lemma 2.7 ([18, Theorem 1.24]). Suppose f(z) is a non-zero meromorphic
function in the complex plane and k is a positive integer. Then

N

(
r,

1

f (k)

)
≤ N

(
r,

1

f

)
+ kN(r, f) + S(r, f).
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Lemma 2.8 ([6, Lemma 2.2]). Let T : (0,+∞)→ (0,+∞) be a non-decreasing
continuous function, s > 0, 0 < α < 1, and let F ⊂ R+ be the set of all r such
that

T (r) ≤ αT (r + s).

If the logarithmic measure of F is infinite, then

lim sup
r→∞

log T (r)

log r
=∞.

Remark. By a simple geometric observation and Lemma 2.8, we conclude that:
Let f(z) be a meromorphic function of finite order, then

(2.2) N

(
r,

1

f(z + c)

)
≤ N

(
r + |c|, 1

f(z)

)
= N

(
r,

1

f

)
+ S(r, f).

3. Proof of Theorem 1.1

(1) Suppose that σ ≥ λf , and that σ < σ(f) − 1. Then λf < σ(f) − 1
follows. From Hadamard’s Theorem, then we may write f(z) in the from

(3.1) f(z) =
H1(z)

H2(z)
eg(z),

where H1(z)(H2(z)) 6≡ 0 is the canonical product formed by zeros (poles) of
f(z) such that

λ(H1) = σ(H1) = λ(f) < σ(f)− 1,

λ(H2) = σ(H2) = λ

(
1

f

)
< σ(f)− 1.

(3.2)

In addition, we have

(3.3) g(z) = amz
m + am−1z

m−1 + · · ·+ a1z + a0

is a polynomial with deg (g(z)) = m = σ(f), where am, . . . , a0 are constants
and am 6= 0. Notice λf < σ(f) − 1, then we have m ≥ 2. Furthermore, from

(3.1), we can rewrite f (k)(z)(k = 1, 2, . . . , n) as the following form

(3.4) f (k)(z) =

(
H1(z)

H2(z)
eg(z)

)(k)

= Φk(z)eg(z),

where Φk(z) is a polynomial formed by H1(z)
H2(z)

, g(z) and their derivatives. Sub-

stituting (3.4) into (1.1), we have

Pn(z)Φn(z + ηn)eg(z+ηn) + Pn−1(z)Φn−1(z + ηn−1)eg(z+ηn−1)

+ · · ·+ P1(z)Φ1(z + η1)eg(z+η1) + P0(z)
H1(z + η0)

H2(z + η0)
eg(z+η0) = 0.

(3.5)
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From (3.2) and Lemma 2.5, it follows that

σ (PkΦk(z + ηk)) ≤ max{σ, σ(H1), σ(H2)} ≤ max{σ, λf} < m− 1,

σ

(
P0
H1(z + η0)

H2(z + η0)

)
≤ max{σ, λf} < m− 1.

(3.6)

On the other hand, since deg (g(z)) ≥ 2, we obtain for i 6= j that

(3.7) g(z + ηi)− g(z + ηj) = kak(ηi − ηj)zm−1

is a non-constant polynomial with deg(g(z + ηi) − g(z + ηj)) = m − 1. Since

eg(z+ηi)−g(z+ηj) is of regular growth, by (3.6), we get

T (r, PkΦk(z + ηk)) = o
(
T (r, eg(z+ηi)−g(z+ηj))

)
,

T

(
r, P0

H1(z + η0)

H2(z + η0)

)
= o

(
T (r, eg(z+ηi)−g(z+ηj))

)
.

(3.8)

Therefore, by Lemma 2.6, (3.5) and (3.8), we know

PkΦk(z + ηk) ≡ 0, P0
H1(z + η0)

H2(z + η0)
≡ 0,

which is impossible. Hence, σ ≥ σ(f)− 1.
(2) If σ < λf , the same method as (1), we get λf ≥ σ(f)− 1.

4. Proof of Theorem 1.2

The main idea of this proof is from [6], while details are somewhat different.
For the convenience of the reader, we give a complete proof.

By substituting f(z) = g(z) + d into (1.2), we obtain that

(4.1)
Pn(z)g(n)(z + ηn) + · · ·+ P1(z)g′(z + η1)

+ P0(z)g(z + η0) + dP0(z)−Q(z) = 0.

For simplicity, we set

H(z) = Pn(z)g(n)(z + ηn) + · · ·+ P1(z)g′(z + η1) + P0(z)g(z + η0).

Then, we have

(4.2) m

(
r,

1

f − d

)
= m

(
r,

1

g

)
,

and∣∣∣∣H(z)

g(z)

∣∣∣∣ =

∣∣∣∣Pn(z)g(n)(z + ηn) + · · ·+ P1(z)g′(z + η1) + P0(z)g(z + η0)

g(z)

∣∣∣∣
≤
∣∣∣∣Pn(z)g(n)(z + ηn)

g(z)

∣∣∣∣+ · · ·+
∣∣∣∣P1(z)g′(z + η1)

g(z)

∣∣∣∣+

∣∣∣∣P0(z)g(z + η0)

g(z)

∣∣∣∣ .
Thus, Lemma 2.1 and the lemma on the logarithmic derivative yield

(4.3) m

(
r,
H(z)

g(z)

)
= S(r, g).
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Now, noting dP0(z)−Q(z) 6≡ 0, then by (4.1)-(4.3), it follows that

m

(
r,

1

f − d

)
= m

(
r,

1

g

)
= m

(
r,
dP0 −Q

g

)
+m

(
r,

1

dP0 −Q

)
= m

(
r,
H

g

)
+ S(r, g) = S(r, g) = S(r, f).

Hence, we have λ(f − d) = σ(f).

5. Proof of Theorem 1.3

Suppose, contrary to the assertion, that λf < σ(f). Then, using the same
way as in the proof of Theorem 1.1, we obtain f(z) is of regular growth. Since
σ(Q) < σ(f), T (r,Q) = S(r, f) follows. From Theorem 1.2, we have λ(f) =
σ(f), which contradicts the assumption that λf < σ(f). Hence, λf = σ(f).

6. Proof of Theorem 1.5

Suppose that f(z) is a finite order transcendental entire solution of (1.5).
Then, equation (1.5) gives

f(z + c)−Q(z)

f (k)(z)
= eP (z).

By Lemma 2.5, it follows that

deg (P (z)) ≤ max{σ(f(z + c)−Q(z)), σ(f (k)(z))} = σ(f).

In the following, we will prove λ(f) = σ(f). Otherwise, we assume λ(f) <
σ(f), then we know f(z) is normal growth. Hence, we have

(6.1) N

(
r,

1

f

)
= S(r, f).

By Lemma 2.7 and (2.2), we get that

(6.2) N

(
r,

1

f(z + c)

)
= S(r, f), N

(
r,

1

f (k)

)
= S(r, f).

Thus, by (1.5) and (6.2), it follows that

(6.3) N

(
r,

1

f(z + c)−Q(z)

)
= N

(
r,

1

eP (z)f (k)(z)

)
= S(r, f).

Noting Q(z) 6≡ 0, then from (6.2) and (6.3), we obtain that

T (r, f(z+c)) ≤ N
(
r,

1

f(z + c)

)
+N

(
r,

1

f(z + c)−Q(z)

)
+S(r, f) = S(r, f),

which is a contradiction. Hence, λ(f) = σ(f).
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7. Proof of Theorem 1.6

Suppose that j = 0, 1, . . . , n− 1 and

Pj(z) = aj pjz
pj + aj pj−1

zpj−1 + · · ·+ aj 0,

Qj(z) = bj qjz
qj + bj qj−1

zqj−1 + · · ·+ bj 0.

Assume that f(z) 6≡ 0 is a solution of the equation (1.7) such that σ(f) = σ <
∞. From Lemma 2.2, Lemma 2.3 and Lemma 2.5, we get that, for any given
ε > 0, there exits a subset E ⊂ (1,∞) with finite logarithmic measure such
that for all |z| = r /∈ [0, 1] ∪ E,

(7.1)

∣∣∣∣f (k)(z + ηk)

f(z + η0)

∣∣∣∣ =

∣∣∣∣f (k)(z + ηk)

f(z + ηk)

∣∣∣∣ ∣∣∣∣f(z + ηk)

f(z + η0)

∣∣∣∣ ≤ exp{rσ−1+ε}rk(σ−1+ε),

where k = 1, 2, . . . , n.

Case 1. If deg(P0) > deg(Pj)(j = 1, 2, . . . , n − 1), then we take a suitable
z such that amz

m = |am|rm. Combining (1.7) and (7.1), we have for all
sufficiently large r and r /∈ [0, 1] ∪ E, that
(7.2) ∣∣P0(eA) +Q0(e−A)

∣∣
= |a0p0 | ep0r

m|am|(1 + o(1))

≤
∣∣∣∣f (n)(z + ηn)

f(z + η0)

∣∣∣∣+ |Pn−1(eA) +Qn−1(e−A)|
∣∣∣∣f (n−1)(z + ηn−1)

f(z + η0)

∣∣∣∣+ · · ·

+ |P1(eA) +Q1(e−A)|
∣∣∣∣f ′(z + η1)

f(z + η0)

∣∣∣∣
≤ er

σ−1+ε

rn(σ−1+ε) + |an−1pn−1 |epn−1r
m|am|er

σ−1+ε

r(n−1)(σ−1+ε)(1 + o(1))

+ · · ·+ |a1p1 |ep1r
m|am|er

σ−1+ε

rσ−1+ε(1 + o(1)).

If σ(f) < 1, then equation (7.1) yields

(7.3)

∣∣∣∣f (k)(z + ηk)

f(z + η0)

∣∣∣∣ = o(1)

for all sufficiently large r and r /∈ [0, 1]∪E. Hence, by (7.2) and (7.3), it follows
that

|a0p0 | ep0r
m|am|(1 + o(1))

≤
∣∣∣∣f (n)(z + ηn)

f(z + η0)

∣∣∣∣+ |Pn−1(eA) +Qn−1(e−A)|
∣∣∣∣f (n−1)(z + ηn−1)

f(z + η0)

∣∣∣∣+ · · ·

+ |P1(eA) +Q1(e−A)|
∣∣∣∣f ′(z + η1)

f(z + η0)

∣∣∣∣
≤ 1 + |an−1pn−1 |epn−1r

m|am|(1 + o(1)) + · · ·+ |a1p1 |ep1r
m|am|(1 + o(1))

≤ nMemax{p1,...,pn−1}rm|am|(1 + o(1)),



606 X. QI AND L. YANG

and M = max{|an−1pn−1
|, . . . , |a1p1 |, 1}. Since p0 > max{p1, . . . , pn−1} = N,

we have
|a0p0 |
nM

e(p0−N)|am|rm(1 + o(1)) ≤ 1,

which is impossible. Hence, we obtain that σ(f) ≥ 1. From (7.2) again, we
have

|a0p0 | ep0r
m|am|(1 + o(1)) ≤ nMer

σ−1+ε

emax{p1,...,pn−1}rm|am|(1 + o(1)),

which implies that

(7.4)
|a0p0 |
nM

e(p0−N)|am|rm(1 + o(1)) ≤ er
σ−1+ε

.

By Lemma 2.4 and (7.4), we have that σ− 1 + ε ≥ m, which implies σ(f) ≥
m+ 1.

Case 2. If deg (Q0) > deg (Qj), then taking a suitable z such that amz
m =

−|am|rm. Following a similar arguments as above, we also get σ(f) ≥ m+ 1.

In the following, we prove that max{λ(f − a), λ
(

1
f

)
} = σ(f), where a ∈

C\{0}. Conversely, suppose that max{λ(f−a), λ
(

1
f

)
} < σ(f). Then, similarly

as Theorem 1.1, we obtain f(z) is of regular growth. Noting σ(f) ≥ m+ 1, we
have

T (r, {Pj(eA(z)) +Qj(e
−A(z))}) = S(r, f).

Clearly,

a[P0(eA(z)) +Q0(e−A(z))] 6≡ 0.

From Theorem 1.2, we have λ(f − a) = σ(f), which is a contradiction. Hence,

max{λ(f − a), λ
(

1
f

)
} = σ(f).
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