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ON ENTIRE SOLUTIONS OF NONLINEAR

DIFFERENCE-DIFFERENTIAL EQUATIONS

Songmin Wang and Sheng Li

Abstract. In this paper, we study the non-existence of finite order entire
solutions of nonlinear differential-difference of the form

fn +Q(z, f) = h,

where n ≥ 2 is an integer, Q(z, f) is a differential-difference polynomial in
f with polynomial coefficients, and h is a meromorphic function of order
≤ 1.

1. Introduction and main results

In what follows, a meromorphic function f(z) is always meromorphic in the
whole complex plane. We use the standard notations of value distribution
theory, such as T (r, f), m(r, f) and N(r, f), and we assume that the reader
is familiar with the lemma on the logarithmic derivatives, the first and second
fundamental theorems and so on (see [4]). Nevanlinna value distribution theory
of meromorphic functions has been extensively applied to study the properties
of linear and nonlinear differential equations (see e.g. [5, 6, 10]).

Let a(z) be a meromorphic function. If T (r, a) = S(r, f), then a(z) is called a
small function of f(z), where S(r, f) is used to denote any quantity satisfying
S(r, f) = o{T (r, f)} as r → ∞, possibly outside of a set of r with finite
logarithmic measure.

If P (z, f) is a polynomial in f and its derivatives, with small functions of f
as the coefficients, then P (z, f) is said to be a differential polynomial in f .

Given a constant c, f(z+c) is called a shift of f . And a difference monomial
of type

∏m

i=1 f
ni(z + ci) is called a difference product, where c1, . . . , cm ∈ C,

and n1, . . . , nm ∈ N.
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A differential-difference polynomial (resp. a difference polynomial) in f is a
finite sum of products of f , derivatives of f and their shifts (resp. of difference
products of f and its shifts), with all the coefficients of these monomials being
small functions of f .

Yang and Laine have studied the existence of meromorphic solutions of non-
linear differential equations (see, e.g. [8]), and recently, the existence of entire
solutions of differential-difference equations (see [9]). The following two theo-
rems were included in the paper [9].

Theorem A. Let L(z, f) be a linear differential-difference polynomial of f

with polynomial coefficients, and p(z) be a polynomial. Then the equation

f2(z) + L(z, f) = p(z)

has no transcendental entire solutions of finite order.

Theorem B. A nonlinear difference equation

f3(z) + q(z)f(z + 1) = c sin bz,

where q(z) is a nonconstant polynomial and b, c ∈ C are nonzero constants, does

not admit entire solutions of finite order. If q(z) = q is a nonzero constant, then

the equation possesses three distinct entire solutions of finite order, provided

b = 3nπ and q3 = (−1)n+1 27
4 c2 for a nonzero integer n.

To generalize Theorems A and B, we prove the following Theorems 1 and 2.

Theorem 1. Suppose that a nonlinear differential-difference equation is

(1) fn(z) +

m
∑

i=1

Hi(z, f) = p(z),

where n,m ∈ Z+, p(z) is a polynomial, and the terms Hi(z, f) are differential-

difference monomials with polynomial coefficients. If

(2) n > (m+ 1) max
1≤i≤m

deg(Hi)−
m
∑

i=1

deg(Hi),

then the equation has no transcendental entire solutions of finite order.

From Theorem 1, it is easy to see that if deg(H1) = · · · = deg(Hm) = k,
then for the differential-difference equation

fk+1(z) +

m
∑

i=1

Hi(z, f) = p(z),

a similar conclusion holds. If k = 1, the result is just Theorem A.

Theorem 2. For two integers n ≥ 3, k ≥ 0 and a nonlinear differential-

difference equation

(3) fn(z) + q(z)f (k)(z + t) = aeibz + de−ibz ,
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where q(z) is a polynomial and t, a, b, d are complex numbers such that |a|+|d| 6=
0, bt 6= 0,

(i) Let n = 3. If q(z) is nonconstant, then the equation (3) does not admit

entire solutions of finite order. If q := q(z) is constant, then equation (3)
admits three distinct transcendental entire solutions of finite order, provided

that

(4) bt = 3mπ (m 6= 0, if q 6= 0), q3 = (−1)m+1(
3i

b
)3k27ad,

when k is even, or

(5) bt =
3π

2
+ 3mπ (if q 6= 0), q3 = i(−1)m(

3i

b
)3k27ad,

when k is odd, for an integer m.

(ii) Let n > 3. If ad 6= 0, then the equation (3) does not admit entire

solutions of finite order. If ad = 0, then equation (3) admits n distinct tran-

scendental entire solutions of finite order, provided that q := q(z) ≡ 0.

2. Lemmas

The following lemma (see [1, 3]) on quotients of shifts can be seen as the
difference counterpart of the lemma on the logarithmic derivatives, but it fails
for meromorphic functions of infinite order, such as f(z) = exp (ez) (see [9]).

Lemma 1. Let f(z) be a transcendental meromorphic function of finite order

ρ. Then for any given complex numbers c1, c2, and for each ε > 0,

m(r,
f(z + c1)

f(z + c2)
) = O(rρ−1+ε).

In 1962, Clunie [2] obtained Lemma 2 which has been extensively applied in
studying the value distribution.

Lemma 2. Let f(z) be a transcendental meromorphic function, and P (z, f),
Q(z, f) be two differential polynomials of f . If

fn(z)P (z, f) = Q(z, f)

holds and if the total degree of Q(z, f) in f and its derivatives is ≤ n, then

m(r, P (z, f)) = S(r, f).

In 2007, Lemma 2 was generalized for the differential polynomial case in [11],
and Laine and Yang [7] got the Clunie theorem for difference polynomial. Re-
cently they have pointed out that the Clunie theorem for difference polynomial
is also true for a type of differential-difference polynomial (see [9]).

Lemma 3. Let f(z) be a transcendental meromorphic solution of finite order

ρ of a differential-difference equation of the form

fn(z)P (z, f) = Q(z, f),
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where P (z, f), Q(z, f) are differential-difference polynomials in f , and the total

degree of Q(z, f) in f , its derivatives and their shifts is ≤ n. Then for any

ε > 0,

m(r, P (z, f)) = O(rρ−1+ε) + S(r, f),

possibly outside of an exceptional set of finite logarithmic measure.

The following Lemma 4 (see [10]), plays a key role in the proof of Theorem
2.

Lemma 4. Suppose c is a nonzero constant and α is a nonconstant meromor-

phic function. Then the differential equation

f2 + (cf (n))2 = α

has no transcendental meromorphic solutions satisfying T (r, α) = S(r, f).

3. Proofs of the theorems

Proof of Theorem 1. Let f(z) be a transcendental entire solution of finite order
ρ of the equation (1). Set

k = max
i

deg(Hi), ki = deg(Hi) (1 ≤ i ≤ m).

Without loss of generality, we may assume that there exists

Hi(z, f) = qi(z)f
ki1(z)[f (l)(z)]ki2fki3(z + ci1)[f

(s)(z + ci2)]
ki4 ,

where
∑4

j=1 kij = ki(kij ∈ N), l, s ∈ Z+, qi(z) 6≡ 0 is a polynomial, and
ci1, ci2 ∈ C are nonzero constants. Then

Hi(z, f)

fk(z)

= qi(z)
(f (l)(z)

f(z)

)ki2
(f(z + ci1)

f(z)

)ki3
(f (s)(z + ci2)

f (s)(z)

)ki4
(f (s)(z)

f(z)

)ki4
(

f(z)
)ki−k

.

Hence by Lemma 1 and the logarithmic derivatives lemma, we conclude that

m(r,
Hi(z, f)

fk
) ≤ O(rρ−1+ε) + S(r, f) + (k − ki)T (r, f)

for all r sufficiently large, outside of an exceptional set of finite logarithmic
measure. Combining this with (1), we obtain that

nT (r, f) = m(r, p(z)−
m
∑

i=1

Hi(z, f))

≤ m(r,

∑m

i=1 Hi(z, f)

fk(z)
) + kT (r, f) +O(log r)

≤
m
∑

i=1

m(r,
Hi(z, f)

fk
) + kT (r, f) +O(log r)
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≤ (k +

m
∑

i=1

(k − ki))T (r, f) +O(rρ−1+ε) + S(r, f).

Therefore,

[n− ((m+ 1)k −
m
∑

i=1

ki)]T (r, f) ≤ O(rρ−1+ε) + S(r, f).

Now it follows from (2) that ρ(f) < ρ, a contradiction. Theorem 1 is thus
proved. �

Proof of Theorem 2. Suppose that f(z) is a transcendental entire solution of
finite order to the equation (3). Differentiating (3), we have

nfn−1(z)f ′(z) + q′(z)f (k)(z + t) + q(z)f (k+1)(z + t) = ib(aeibz − de−ibz).

Combining this with (3), we obtain

b2
(

fn(z) + q(z)f (k)(z + t)
)2

+
(

nfn−1(z)f ′(z) + q′(z)f (k)(z + t) + q(z)f (k+1)(z + t)
)2

= 4adb2.

This implies that

f2n−2(z)(b2f2(z) + n2f ′2(z)) = Q(z, f),

where Q(z, f) is a differential-difference polynomial of f with the total degree
at most n+ 1.

If Q(z, f) ≡ 0, then it can be deduced from b2f2(z) + n2f ′2(z) = 0 that

(6) f ′′ +
b2

n2
f = 0.

If Q(z, f) 6≡ 0, then by Lemma 3, we have

T (r, b2f2(z) + n2f ′2(z)) = S(r, f).

Thus α := b2f2(z) + n2f ′2(z)(6≡ 0) is a small function of f . By Lemma 4, α
must be a constant. Differentiating α = b2f2(z) + n2f ′2(z), we get (6) again.

From (6), one can see that the form of the solution f must be

(7) f(z) = c1e
ibz

n + c2e
− ibz

n .

Substituting (7) into (3) and denoting ω(z) := e
ibz

n , we get

(8)

cn1ω
2n + C1

nc
n−1
1 c2ω

2n−2 + C2
nc

n−2
1 c22ω

2n−4 + · · ·+ Cn−2
n c21c

n−2
2 ω4

+Cn−1
n c1c

n−1
2 ω2 + cn2 + c1e

ibt

n (
ib

n
)kq(z)ωn+1

+c2e
− ibt

n (− ib

n
)kq(z)ωn−1 = aω2n + d,

where Ci
n = n!

i!(n−i)! (1 ≤ i ≤ n− 1).
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Case (i): n = 3. We have

a6ω
6 + a4ω

4 + a2ω
2 + a0 = 0,

where

(9)















a6 = c31 − a,

a4 = 3c21c2 + c1e
ibt

3 ( ib3 )
kq(z),

a2 = 3c1c
2
2 + c2e

− ibt

3 (− ib
3 )

kq(z),
a0 = c32 − d.

Since ω(z) is a transcendental function, we have

a6 = a4 = a2 = a0 = 0.

Subcase (i)-1: a 6= 0, d 6= 0. Then c1 6= 0, c2 6= 0, q := q(z) is a nonzero
constant and

e
ibt

3 (
ib

3
)k = e−

ibt

3 (− ib

3
)k.

We obtain from this that

(10)

{

bt = 3mπ(m 6= 0), 3c1c2 + (−1)m( ib3 )
kq = 0 if k is even,

bt = 3π
2 + 3mπ, 3c1c2 + i(−1)m( ib3 )

kq = 0 if k is odd,

where m ∈ Z. Therefore, (4) and (5) hold.
Subcase (i)-2: a 6= 0 and d = 0. Then c1 6= 0, c2 = 0. From a4 = 0, we have

q ≡ 0. Therefore, (4) and (5) hold.
Subcase (i)-3: a = 0 and d 6= 0. Then c1 = 0, c2 6= 0. From a2 = 0, we have

q ≡ 0. Thus (4) and (5) still hold.
Case (ii): n > 3. We get from (8) that

(11) a2nω
2n + a2n−2ω

2n−2 + · · ·+ a2ω
2 + a0 = 0,

where

a2n = cn1 − a, a0 = cn2 − d.

Since 2n− 2 > n+ 1 and 2 < n− 1, then

a2n−2 = ncn−1
1 c2, a2 = nc1c

n−1
2 .

Since ω(z) is a transcendental function, we get

a2n = a2n−2 = · · · = a2 = a0 = 0.

Subcase (ii)-1: a 6= 0, d 6= 0. Then it can be deduced from a2n = 0 and
a0 = 0 that

c1 6= 0, c2 6= 0.

This is a contradiction to a2n−2 = 0 and a2 = 0. Hence the equation (3) does
not admit entire solutions of finite order.

Subcase (ii)-2: a 6= 0 and d = 0. Then c1 6= 0, c2 = 0.
If n is even, then n+ 1 is odd. Therefore, the coefficient of ωn+1 in (11) is

an+1 = c1e
ibt

n (
ib

n
)kq(z).
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Since an+1 = 0 and c1 6= 0, we have q := q(z) ≡ 0.
If n is odd, then n+1 and n− 1 are both even. Therefore, the coefficient of

ωn+1 in (11) is

an+1 = C
n−1

2
n c

n+1

2

1 c
n−1

2

2 + c1e
ibt

n (
ib

n
)kq(z).

Since an+1 = 0, c1 6= 0 and c2 = 0, we get q := q(z) ≡ 0.
Subcase (ii)-3: a = 0 and d 6= 0. With a similar reasoning as the Subcase

(ii)-2, we can prove that q := q(z) ≡ 0.
The proof is thus completed. �

4. Examples and remarks

Examples. In the equation

f3 = ie−z,

since q = 0, a = i, b = i, d = 0, then by (7) and (9), three solutions of the
equation are

f1(z) = (

√
3

2
+

1

2
i)e−

z

3 , f2(z) = (

√
3

2
+

1

2
i)εe−

z

3 , f3(z) = (

√
3

2
+

1

2
i)ε2e−

z

3 ,

where ε := − 1
2 +

√
3
2 i is a cubic root of unity.

The differential-difference equation

f3(z) + 2f ′(z + 1) = π3e
i3π
2 +

1

27
e−

i3π
2

satisfies the condition (5). Therefore, combing (7) with (10), its three finite
order entire solutions are

f1(z) = πe
iπz

2 +
1

3
e−

iπz

2 = 2πi sin
πz

2
+ (π +

1

3
)e−

iπz

2 ,

f2(z) = πεe
iπz

2 +
1

3
ε2e−

iπz

2 = 2πεi sin
πz

2
+ (πε+

1

3
ε2)e−

iπz

2 ,

f3(z) = πε2e
iπz

2 +
1

3
εe−

iπz

2 = 2πε2i sin
πz

2
+ (πε2 +

1

3
ε)e−

iπz

2 .

Next we give some remarks.

Remark 1. Let t = 0 and b 6= 0 in (3). Then by Lemma 2, Lemma 4 and the
similar proof of Theorem 2, we can find that neither

fn(z) + q(z)f (k)(z) = aeibz + de−ibz (n > 3)

nor

f3(z) + q(z)f (2k+1)(z) = aeibz + de−ibz

does admit transcendental entire solutions if ad 66= 0.
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In addition, the equation

f3(z) + q(z)f (2k)(z) = aeibz + de−ibz

admits three distinct transcendental entire solutions, provided that

q3 = (−1)k+1(
9

b2
)3k27ad.

If q(z) is a nonconstant polynomial, then the equation above does not admit
entire solutions of finite order (For the case k = 1, see [9]).

Remark 2. Now, we can conclude that the equation

(12) f3(z) = aeibz + de−ibz

has no transcendental entire solutions in the complex plane if abd 66= 0, where
a, b, d are constants.

In fact, (12) determines a 3-valued algebroid function, and the function is
transcendental entire in the Riemann surface.

Remark 3. We may ask the following question: for the difference-differential
equation of the form

fn(z) + L(z, f) = aeibz + de−ibz (n ≥ 3),

where L(z, f) is some linear difference-differential polynomial of f with poly-
nomial coefficients, what can we say considering Theorem 2?
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