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ON PERIODICIZING FUNCTIONS

TosHIKI NAITO AND JONG SON SHIN

ABSTRACT. In this paper we introduce a new concept, a “period-
icizing” function for the linear differential equation with the peri-
odic forcing function. Moreover, we construct this function, which
is closely related with the solution of a difference equation and an
indefinite sum. Using this function, we can obtain a representation
of solutions from which we see immediately the asymptotic behavior
of the solutions.

1. Introduction

We denote by R and by C the set of real numbers and the set of
complex numbers, respectively.
Let us consider a linear differential equation of the form

(1) fld—f — Az+ f(t), @(0)=weCY
where A € My(C), the set of all complex d x d matrices, and f : R — C¢
is a nontrivial continuous 7-periodic function.

The purpose of this paper is to find a periodicizing function for Equa-
tion (1).

It is well known that the solution of the above equation is expressed
as

(2) x(t) := z(t; 0, w) = ew + /t eAt=9) f(s)ds.
0
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However, from this representation it is not easy to see asymptotic be-
haviors of solutions of Equation (1). In the paper [2], we gave a new
representation of the solution of Equation (1), from which asymptotic
behaviors of solutions are seen.

Its representation is essentially related to a periodicizing function for
Equation (1), as stated below. We take a continuous function z(t) such
that the function

¢
h(t) := z(t) +/ eAt=9) f(s)ds, teR,
0

becomes a nonconstant continuous 7-periodic function. Then the solu-
tion z(t) of Equation (1) is rewritten as

z(t) = (e*w — 2(t)) + h(t).

The first term of the right hand side is well known. We call such a
function z(t) a “periodicizing” function (for Equation (1)). Therefore,
to find a periodicizing function is very important in obtaining the repre-
sentation of solutions and in studying asymptotic behaviors of solutions
for Equation (1). In this paper we will construct a periodicizing function
z(t), which is closely related to the solution of a difference equation and
an indefinite sum. '

2. Discrete linear difference equations and the indefinite
sum

2.1. Discrete linear difference equations

Let og(A) be the set of all eigenvalues of A and m the index of A €
a(A). Let My = N((A — AE)™) be the generalized eigenspace of \ €
o(A), where E € M,(C) stands for the unite matrix. Then we have the
direct sum decomposition

c'= P M,

A€o (A)

Let Py be the projection on C® to M) induced from this decomposition.
Set N:={1,2,3,...}.
Now, we solve the discrete linear difference equation of the form

(3) Tnpr =€ Az + b, z0=w,
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where n € NU {0}. For the simplicity of the description, we set

: d 1
= D(z) = —
e(z) -1 °© (2) dzi e — 1
Moreover, we define X(A) and Y)\(A) for A € 0(A) as
m—1
Xa4) =) (%A) (A AE), if e #£1,
=0
and
m—1
: TA _
Ya( ZOB”A AE), if e =1,

where B;,i € NU {0}, stand for Bernoulli’s numbers, refer to [3].

The following result can be found in [2].

THEOREM 1. [2] Let A € 0(A). The component Pyz,, of the solution
Zn,n € N, of Equation (3) is given as follows :

1) If €™ # 1, then
m—1
Pap=e"Y n T—, A= AE)[Paw + Xx(A)Prb] — XA(A)Prb
1=0 v
= " A[Pyw + X\(A)Prb] — X\ (A)Pyb.

2) If e™ =1, then
m—1 R

i TI1d (A AE) [T(A AEYPyw + Y (A )P)\b] + Pyw.

P)\xn—

2.2. The indefinite sum

We will give fundamental results on the indefinite sum. Let 7 > 0
and h : [0,00) — C? be a continuous function.

First, we consider the problem of finding a continuous solution of the
following equation

(4) Ara(t) = 2(t +7) - 2(t) = h(t), t € [0,00),

that is, the indefinite sum z(t) = A71h(t). If 2o(t) is one of solutions of
Equation (4), then any other solution z(t) is given by

z(t) = 20(t) + c(t)
with an arbitrary continuous 7-periodic function c(t)(it is called a peri-
odic constant).
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LEMMA 2.1.
1) Let ¢ : [0,7] — C¢ be a continuous function such that

(5) (1) = ¢(0) + h(0).

Then a continuous solution z(t) of Equation (4) satisfying the initial
condition z(s) = ¢(s), s € [0, 7], exists uniquely on [0,00). Moreover, it
is given by

n—1
(6) z(s+nt)=1p(s)+ Zh(s +i7), (s€0,7), n=1,2,...).
=0

2) Conversely, if a continuous function z(t) is a solution of Equation
(4), then p(t) := z(t), t € [0, 7], satisfies the condition (5) and z(t) is
given by (6).

Proof. 1) It follows from Equation (4) that there exists a function
2(t), t € [0,00) such that

n—1
z2(s+n1) = p(s) + Z h(s+1i7), (s€[0,7), n€N),
=0
which is unique, refer to [3]. Then z(t) is continuous on [0,c0) \ 7N.
Claim the continuity of z(t) at points ¢ = nr, n € N. Clearly, we have

n—1
sl_l}I(I)l_ﬁ_ z2(s+nt) = sl_l.%l+ o(s) + sl_l’l(l)fl_'_ kzzo h(s + kT)
n—1
= (0) + > _ h(kr).
k=0
On the other hand, using the condition (5), we have that
n—2
sl_lgl_ z(s+nt) = 31_1}(1)1_ o(s+71)+ 81_1)151_ kzzo h(s+ 7+ k7)
n—2
= (1) + Y _h((1+k)7)
k=0

’ n—1
= (0) + A(0) + > _ h(kT)
k=1

n—1

= p(0) + > _ h(kr).

k=0
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Hence .
n—
;i_ar(l) z2(s+n7) = z(n1) := ¢(0) + % h{kT)

holds, which means that z(t) is continuous at ¢ = n7,n € N. Therefore,

z: [0,00) — C? is a continuous solution of Equation (4). 2) is obvious.
]

Next, we consider a special case of Equation (4) : that is,
(7) 2(t+ 1) — 2(t) = —B(t)b, t € [0,00),
where b € C?% and B(t),t € [0,00), is a continuous matrix function such
that
(8) B(s+kt) = B(s)B*(r), k€N.

In this case, the continuous variable ¢ in Equation (7) is reduced to the
discrete variable.

LEMMA 2.2
1) Let ¢ : [0,7] — C¢ be a continuous function such that

(9) (1) = (0) — B(0)b.

Then a continuous solution z(t) of Equation (7) satisfying the initial
condition z(t) = ¢(t),t € [0, 7] exists uniquely on [0,00). Moreover, it
is given by

(10) 2(s +n7) = p(s) — B(s)zn(0) (s€{0,7), n€N),

where x,(0) is the solution of the difference equation of the form

(11) Tma1 = B(T)Tm +b, 20 =0.

2) Conversely, if a continuous function z(t) is a solution of Equation
(7), then @(t) := z(t), t € 0,7, satisfies the condition (9) and z(t) is
given by (10).

Proof. 1) If s € [0,7) and n € N, then from (6) in Lemma 2.1 and
(8) it follows that

n—1
z(s+n1) = z2(s)— Z B(s+147)b
=0
= z(s) — B(s) z—: B*(7)b.
=0

Clearly, we have that 57 B¥(7)b = 2,,(0). 2) is obvious. O
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We note that B(t) = e*4, A € M(C), satisfies the condition (8).

3. A periodicizing function

In this section we will construct a periodicizing function for Equation
(1) ; that is,

%f— — Az(t) + (), 2(0) = w € C°.
Let A € 6(A). If an M), valued function y(t) satisfies the equation
d
=5 = Ay(H) + PAf(D),

we say that y(¢) is a solution of Equation (1) in M). Clearly, if z(t) is
a solution of Equation (1), then Pyz(t) is a solution of Equation (1) in
M,. Put

bfz/ eA(7=9) f(s)ds.
0

To apply our idea for Equation (1), we will translate the solution
z(t) := z(t; 0, w) of Equation (1) as follows :

z(t) = eAtw — z(t) + h(t),
where

(12) h(t) = z(t) + /0 t eAt=9) f(s)ds.

The condition that h(t) is T-periodic is equivalent to the condition that

Z(t+71)+ /t+T eAtHT=9) £(5)ds = 2(t) + /t eAt=9) £(5)ds.

0 ) 0
Since
t+r ¢
/0 eAt+T=9) f(5)ds = ey + /0 eAt=9) £(s)ds,
we have
(13) Arz(t) i= 2(t + 7) — 2(t) = —eby.

Therefore z(t) is an indefinite sum of —eA%by ; that is, 2(t) = A (—eAtby).
Summarizing these, we obtain the following result.
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LEMMA 3.1. A periodicizing function for Equation (1) is an indefinite
sum of —e“'hs. Moreover, the solution z(t) of Equation (1) is expressed
as follows :

z(t) = eMw — A7 (—eby) + h(t),

where .
h(t) = AT (—ebf) + / eAt=3) £ (s)ds
: 0
is a T-periodic function.

Since h(t) is a 7-periodic function and the second term of the right
hand side in (12) is defined on R, the periodicizing function z(t) is well
defined on R provided z(t) is defined on [0, co).

Now, we are in a position to state the main theorem in this paper.

THEOREM 2. Let A € o(A).
1) Ife™ # 1, then

AT (—eMPyb) = —e4 X\ (A)Prb + ¢(t), t >0,

T

where ¢(t) is a periodic constant.
2) If e™ =1, then

A

t M-l 541
- e 124
AT (—eMPyb) = —— )
j=0

G (A — AEYY\(A)Pyb+d(t), t >0,

T

where d(t) is a periodic constant.

Proof. Let us consider the equation
(14) Prz(t +7) — Prz(t) = —Pre!b.

It follows from Lemma 2.2 that there exists a continuous solution Py z(t)
of Equation (14), which satisfies the relation

(15) Prz(s +nt) = Pyz(s) — Pxe*4z,(0), (s €[0,7),n=0,1,2,...),

where z,,(0) is the solution of Equation (3) with w = 0.
1) Assume that €™ # 1. Put X = X,(A)P\b. Using Theorem 1 we
have '

Pz, (0) = "4X — X,
which yields that
Pre*4z,(0) = 4 (e"TAX - X)
- —SAY + e(s+nT)AX.
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Hence the relation (15) is reduced to
Prz(s +n7) = (Pyz(s) + e X) - eltnAx,
Since ‘
Prz(s+n1) + eCAX = Py2(s) + eAX,
c(t) := P\z(t) + et4X is T-periodic. Therefore we obtain
Prz(t) = —e A X +c(t).

2) Assume that e’™ = 1. Put Y = Y,(A)Pyb. Using Theorem 1 again,
we have

Pre*Az,(0)
m—1 k: m—1 J+1 . j
As n T :
= E - - 7
e ;_:’“'(A AE)F J§=0:J+1J'!(A AEYY

As gy Sknj+1Tj A—\E j+kY
=MD D A

k=0 j=0
g m—1
- _:s‘:l klo k!(gn—TZ:l;! (4-ABY
m—1i+1 , s m—1 st
:-s ; k+0 ks' z+1 — (A MY % 1-2-_-:0 (i + +i)'(A MEYY
_ *(s:"”’ ”g (s Jf?) 1(,4 AEYY — & mi: (i j:) (A - AE)Y.

Thus the relation (15) becomes

ers Ml g1 .
Pyz(s + nt) = Paz(s) + — Z - (A— AE)Y
§=0 '

eAMs+nT) UL (54 pr)itl

- . (A — AEYY.
T G+
Since
At molo i+l _
= . —\EY
d(t) :== Paz(t) + - G+ 1)'(A AEYY
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is T-periodic, we obtain

Pa(t) = - ' Si(A=ABYTY +d(t).

]

Combining Lemma 3.1 and Theorem 2, we can obtain the following
result, which is a modification of the one given in [2].

THEOREM 3. Let A € 0(A) and z(t) := z(t;0,w) be the solution of
Equation (1).
1) If ™ # 1, then

Pyx(t) = e [PAw + X2 (A)Pabs] + ua(t, by)
= M Z (A~ AEY[Paw + Xa(A)Paby] + ur(t,by),

where

t
u(t,by) = —eA X \(A)Prbs + / et=4P, f(s)ds
0

is a T-periodic solution of Equation (1) in M.
2) Ife™ =1, then

ATl it

Paa(t) = — 2 G+

(A = AE)[1(A — AE)Pxw + Y(A) P\by]

+eMPw + ua(t, by),

where e* Pyw and

ua(t,bf) = —— (A )\E)]Y,\(A)P)‘bf

t
+ / et=9)4Pp, f(s)ds
0
are T-periodic functions, which are not necessarily solutions of Equation
(1) in M.

Proof. 1) Assume that e*” # 1. Combining Lemma 3.1 and Theorem
2, we have

Pyz(t) = et Pyw — A7 (—eMPybs) + un(t, by)
= e [Paw + Xa(A)Paby] + ua(t, by),
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where
t
u(t, by) = —e" X\(A) Pabs + / et=94Pp, f(s)ds
0

Notice that the periodic constant c(t) is canceled. It is easy to see that
ux(t,bs) is a T-periodic solution of Equation (1) in M).
2) Assume that e’™ = 1. In view of Lemma 3.1, we have

Px(t) = e Paw — A7 (—e® Pybs) + va(t, by),
where

ua(t,br) = A7 (= Pybs) + / t et=9)4p, f(s)ds
Furthermore, from Theorem 2 we have ’

e Pyw — AT (—e* Pyby)

m—1
] .
= P + e Z (A — AE) Py
=1 '
pots m—1 i+l 4 . ; A
— - AE)Y, Py, —d(2
= et’\PAw
et Mol it .
+ — ————|(A — AEY(r(A— AE)Pyw + Y,\(A)P)\bf) —d(t).
T = (F+1)!
Therefore
oA ML it .
Pyz(t) = — ] (A= AEY (1(A - AE)Pyw + Y)(A)P\by)
T
j=0
+ et/\PXw + ua(t, bf).
We note that the periodic constant d(t) is canceled. O

Notice that from this result we can easily obtain asymptotic behaviors
of solutions of Equation (1), for details, refer to [2].

ExaMPLE. We will explain Theorem 2 and Theorem 3 through a
simple one dimensional linear differential equation

(16) %:-Et— =ax(t)+ f(t), z(0)=weC,
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where a € C and f is a continuous 7-periodic scalar function. Then (13)
is reduced to

Arz(t) = z(t +7) — 2(t) = —e*by.
Using Theorem 2 with By = 1, we have

eat
- by, (e #£1)
17 2(1) = A 1 _eatb — 1_3:7 s s
(1) )= a7 ey = T T
Therefore, by Theorem 3 the solution z(t) of Equation (16) is ex-

pressed as follows.
1) If " # 1, then

l_ea'r

z(t;0,w) = e® (w - bf) + u(t, by),

where

t
. t—
u(t,by) =€ T e‘”bf +/0 et=9) £(5)ds
is a 7-periodic solution of Equation (16).
2) If e*” =1, then

eat

2(t;0,w) = —tbs + e w + v(t, by),

where .
v(t,by) = —e“tébf +/ et~ f(5)ds
0

is a 7T-periodic function, however, which is not a solution of Equation

(16).
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