• Title/Summary/Keyword: Differential amplifier

Search Result 236, Processing Time 0.024 seconds

The performance degradation of CMOS differential amplifiers due to hot carrier effects (Hot carrier 현상에 의한 CMOS 차동 증폭기의 성능 저하)

  • 박현진;유종근;정운달;박종태
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.34D no.7
    • /
    • pp.23-29
    • /
    • 1997
  • The performance degradation of CMOS differential amplifiers due to hot carrier effect has been measured and analyzed. Two-state CMOS amplifiers whose input transistors are PMOSFETs were designed and fabriacted using the ISRC CMOS 1.5.mu.m process. It was observed after the amplifier was hot-carrier stressed that the small-signal voltage gain and the input offset voltage increased and the phase margin decreased. The performance variation results from the increase of the transconductances and gate capacitances of the PMOSFETs used as input transistors in the differential input stage and the output stage and also resulted from the decrease of their output conductances. After long-term stress, the amplifier became unstable. The reason might be that its phase margin was reduced due to hot carrier effect.

  • PDF

An MMIC Broadband Image Rejection Downconverter Using an InGaP/GaAs HBT Process for X-band Application

  • Lee Jei-Young;Lee Young-Ho;Kennedy Gary P.;Kim Nam-Young
    • Journal of electromagnetic engineering and science
    • /
    • v.6 no.1
    • /
    • pp.18-23
    • /
    • 2006
  • In this paper, we demonstrate a fully integrated X-band image rejection down converter, which was developed using InGaP/GaAs HBT MMIC technology, consists of two single-balanced mixers, a differential buffer amplifier, a differential YCO, an LO quadratue generator, a three-stage polyphase filter, and a differential intermediate frequency(IF) amplifier. The X-band image rejection downconverter yields an image rejection ratio of over 25 dB, a conversion gain of over 2.5 dB, and an output-referred 1-dB compression power$(P_{1dB,OUT})$ of - 10 dBm. This downconverter achieves broadband image rejection characteristics over a frequency range of 1.1 GHz with a current consumption of 60 mA from a 3-V supply.

Design & implementation of differential sensor using electrostatic capacitance method for detecting Ringer's solution exhaustion (링거액 소진 감지를 위한 정전용량방식의 차동센서 설계 및 제작)

  • Sim, Yo-Sub;Kim, Cheong-Worl
    • Journal of Sensor Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.391-397
    • /
    • 2010
  • This paper proposes a differential structure sensor for detecting Ringer's solution exhaustion, in which three C-type electrodes of 10 mm width are disposed on a ringer hose at a distance of 5 mm each other in the direction of Ringer's solution flow. In the center of middle electrode, two capacitances are formed at the proposed sensor. When ringer hose is filled with Ringer's solution, there is no difference between two capacitances. But capacitance difference exist under the Ringer's solution shortage, because the shortage causes the hose filled with air from the top position electrode. The capacitance difference got to maximum 1.81 pF, when air was filled between top and middle electrode and the last of hose was filled with 10 % dextrose injection Ringer's solution. The capacitance difference varied with hose-wraparound coverage of electrodes as well as the width of them. For hose-wraparound electrode coverage of 90 % and 70 %, the maximum capacitance difference was 1.81 pF and 1.56 pF, respectively. A differential charge amplifier converted the capacitance difference to electric signal, and minimized electrodes' adhering problem and external noise coupling problem.

Design of a New CMOS Differential Amplifier Circuit (새로운 구조를 갖는 CMOS 자동증폭회로 설계)

  • 방준호;조성익;김동용;김형갑
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.6
    • /
    • pp.854-862
    • /
    • 1993
  • All of the CMOS analog and analog-digital systems have composed with several basic circuits, and among them, a important block, the amplifier part can affect the system's performance, Therefore, according to the uses in the system, the amplifier circuit have designed as various architectures (high-gain, low-noise, high-speed circuit, etc...). In this paper, we have proposed a new CMOS differential amplifier circuit. This circuit is differential to single ended input stage comprised of CMOS complementary gain circuits having internally biasing configurations. These architectures can be achieved the high gain and reduced the transistors for biasing. As a results of SPICE simulation with the standard $1.5{\mu}m$ processing parameter, the gain of the proposed circuit have a doubly value of the typical circuit's while maintaining other characteristics(phase margin, offset, etc...). And the proposed circuit is applicated in a simple CMOS comparator which has the settling time in 7nsec(CL=1pF) and the igh output swing $({\pm}4.5V)$.

  • PDF

A Design of 12-bit 100 MS/s Sample and Hold Amplifier (12비트 100 MS/s로 동작하는 S/H(샘플 앤 홀드)증폭기 설계)

  • 허예선;임신일
    • Proceedings of the IEEK Conference
    • /
    • 2002.06b
    • /
    • pp.133-136
    • /
    • 2002
  • This paper discusses the design of a sample-and -hold amplifier(SHA) that has a 12-bit resolution with a 100 MS/s speed. The sample-and-hold amplifier uses the open-loop architecture with hold-mode feedthrough cancellation for high accuracy and high sampling speed. The designed SHA is composed of input buffer, sampling switch, and output buffer with additional amplifier for offset cancellation Hard Ware. The input buffer is implemented with folded-cascode type operational transconductance Amplifier(OTA), and sampling switch is implemented with switched source follower(SSF). A spurious free dynamic range (SFDR) of this circuit is 72.6 dB al 100 MS/s. Input signal dynamic range is 1 Vpp differential. Power consumption is 65 ㎽.

  • PDF

The design of amplifier for 128 channels Cardiac-activation system (128채널 심장전기도 시스템의 증폭기 설계)

  • Han, Young-Oh
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.2
    • /
    • pp.123-130
    • /
    • 2007
  • In this paper, the design requirement and the electrical circuit analysis are performed to construct the multi-channel cardiac activation pre-amplifier necessary for a signal conditioning circuit. The general 64 channel configuration is expanded into 128 channels to enhance the spatial resolution on the mapped surface of the heart. The 128 channels pre-amplifier consists of input circuit, differential amplifier, right leg driven circuit and main-amplifier with notch filter part.

  • PDF

Input Balun Design Method for CMOS Differential LNA (차동 저 잡음 증폭기의 입력 발룬 설계 최적화 기법)

  • Yoon, Jae-Hyuk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.5
    • /
    • pp.366-372
    • /
    • 2017
  • In this paper, the analysis of baluns that are inevitably required to design a differential low noise amplifier, The balun converts a single signal input from the antenna into a differential signal, which serves as an input to the differential amplifier. In addition, it protects the circuit from ESD(Electrostatic Discharge) coming through the antenna and helps with input matching. However, in the case of a passive balun used in general, since the AC signal is transmitted through electromagnetic coupling formed between two metal lines, it not only has loss without gain but also has the greatest influence on the total noise figure of the receiving end. Therefore, the design of a balun in a low-noise amplifier is very important, and it is important to design a balun in consideration of line width, line spacing, winding, radius, and layout symmetry that are necessary. In this paper, the factors to be considered for improving the quality factor of balun are summarized, and the tendency of variation of resistance, inductance, and capacitance of the balun according to design element change is analyzed. Based on the analysis results, it is proved that the design of input balun allows the design of low noise, high gain differential amplifier with gain of 24 dB and noise figure of 2.51 dB.

A CMOS Envelope Tracking Power Amplifier for LTE Mobile Applications

  • Ham, Junghyun;Jung, Haeryun;Kim, Hyungchul;Lim, Wonseob;Heo, Deukhyoun;Yang, Youngoo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.2
    • /
    • pp.235-245
    • /
    • 2014
  • This paper presents an envelope tracking power amplifier using a standard CMOS process for the 3GPP long-term evolution transmitters. An efficiency of the CMOS power amplifier for the modulated signals can be improved using a highly efficient and wideband CMOS bias modulator. The CMOS PA is based on a two-stage differential common-source structure for high gain and large voltage swing. The bias modulator is based on a hybrid buck converter which consists of a linear stage and a switching stage. The dynamic load condition according to the envelope signal level is taken into account for the bias modulator design. By applying the bias modulator to the power amplifier, an overall efficiency of 41.7 % was achieved at an output power of 24 dBm using the 16-QAM uplink LTE signal. It is 5.3 % points higher than that of the power amplifier alone at the same output power and linearity.

Design of a 24 GHz Power Amplifier Using 65-nm CMOS Technology (65-nm CMOS 공정을 이용한 24 GHz 전력증폭기 설계)

  • Seo, Dong-In;Kim, Jun-Seong;Cui, Chenglin;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.10
    • /
    • pp.941-944
    • /
    • 2016
  • This paper proposes 24 GHz power amplifier for automotive collision avoidance and surveillance short range radar using Samsung 65-nm CMOS process. The proposed circuit has a 2-stage differential power amplifier which includes common source structure and transformer for single to differential conversion, impedance matching, and power combining. The measurement results show 15.5 dB maximum voltage gain and 3.6 GHz 3 dB bandwidth. The measured maximum output power is 13.1 dBm, input $P1_{dB}$ is -4.72 dBm, output $P1_{dB}$ is 9.78 dBm, and maximum power efficiency is 17.7 %. The power amplifier consumes 74 mW DC power from 1.2 V supply voltage.

Evaluation of Liquid Pressure Amplifier Technology

  • Reindl Douglas T.;Hong Hiki
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.3
    • /
    • pp.119-127
    • /
    • 2005
  • Liquid pressure amplifiers have been proposed as an energy saving technology for vapor compression refrigeration systems configured with direct-expansion evaporators. The technology utilizes a refrigerant pump in the high pressure liquid line as a means of maintaining a suitable pressure differential across the expansion valve while lowering condensing pressure to achieve the reduction of compressor energy consumption. Applications have been proposed on systems ranging from small unitary air-conditioning to large supermarket and commercial refrigeration systems. This paper clarifies the role of such a device in a vapor compression refrigeration system. Limitations are presented and discussed. Finally, results of detailed analyses are presented to quantify the energy consumption both with and without a liquid pressure amplifier in a unitary air conditioning system. The estimated energy savings associated with the installation of a liquid pressure amplifier are minimal.