• Title/Summary/Keyword: Differential Value

Search Result 1,102, Processing Time 0.027 seconds

OPTIMAL STRATEGIES IN BIOECONOMIC DIFFERENTIAL GAMES: INSIGHTS FROM CHEBYSHEV TAU METHOD

  • Shahd H. Alkharaz;Essam El-Siedy;Eliwa M. Roushdy;Muner M. Abou Hasan
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.2
    • /
    • pp.527-543
    • /
    • 2024
  • In the realm of differential games and bioeconomic modeling, where intricate systems and multifaceted interactions abound, we explore the precision and efficiency of the Chebyshev Tau method (CTM). We begin with the Weierstrass Approximation Theorem, employing Chebyshev polynomials to pave the way for solving intricate bioeconomic differential games. Our case study revolves around a three-player bioeconomic differential game, unveiling a unique open-loop Nash equilibrium using Hamiltonians and the FilippovCesari existence theorem. We then transition to numerical implementation, employing CTM to resolve a Three-Point Boundary Value Problem (TPBVP) with varying degrees of approximation.

A Study on the 2nd Harmonic Blocking Scheme and Setting Value of a Current Differential Relay for 154 kV Transformers to Prevent Maloperation (154 kV 변압기 보호용 비율차동계전기 오동작 방지를 위한 2고조파 억제 방식의 적용방법 및 정정값에 관한 연구)

  • Son, Yong-Beom;Kang, Sang-Hee
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.1
    • /
    • pp.29-37
    • /
    • 2018
  • Inrush current and fault current in a transformer need to be distinguished from one another. In order to do this, KEPCO uses a 2nd harmonic restraint/block method. We use two setting values for 2nd harmonic restraint; 15% and 10%. We also apply per-phase blocking method among various harmonic restraint methods. If the transformer is located at the radial system, we adjust 10% in the 2nd harmonic restraint, but this method is not enough to prevent mal-operations of the current differential relay and let us spend more time to change setting value again as the power system changes. In this paper, a more reasonable setting value for a 2nd harmonic blocking scheme in KEPCO is proposed. To present a proposed method, the fault data of the current differential relays which have occurred since 2009 are analyzed. To evaluate the performance of the proposed method, the results of the RTDS test for the current differential relay of the transformer by KEPCO are analyzed.

Decision of Adaptive Threshold Value Using Histogram in Differential Image (차영상에서의 히스토그램을 이용한 적응적 임계값 결정)

  • 오명관;김태익;최동진;전병민
    • The Journal of the Korea Contents Association
    • /
    • v.4 no.3
    • /
    • pp.91-97
    • /
    • 2004
  • Difference image scheme is widely used for motion estimation in moving object tracking system. This scheme contains a binarization step which segments image into background and moving object regions, referring to threshold value. In this paper, we propose a decision algorithm of tracking the threshold value with a differential image. The key idea is analyzing the histogram of the differential image. In addition we evaluate the performance of this method in comparison with conventional scheme. As an experimental result with 60 images, it is found that threshold by the proposed algorithm is very close to optimal threshold selected manually.

  • PDF

THE METHOD OF QUASILINEARIZATION AND A THREE-POINT BOUNDARY VALUE PROBLEM

  • Eloe, Paul W.;Gao, Yang
    • Journal of the Korean Mathematical Society
    • /
    • v.39 no.2
    • /
    • pp.319-330
    • /
    • 2002
  • The method of quasilinearization generates a monotone iteration scheme whose iterates converge quadratically to a unique solution of the problem at hand. In this paper, we apply the method to two families of three-point boundary value problems for second order ordinary differential equations: Linear boundary conditions and nonlinear boundary conditions are addressed independently. For linear boundary conditions, an appropriate Green\`s function is constructed. Fer nonlinear boundary conditions, we show that these nonlinearities can be addressed similarly to the nonlinearities in the differential equation.

ANALYSIS OF SOLUTIONS FOR THE BOUNDARY VALUE PROBLEMS OF NONLINEAR FRACTIONAL INTEGRODIFFERENTIAL EQUATIONS INVOLVING GRONWALL'S INEQUALITY IN BANACH SPACES

  • KARTHIKEYAN, K.;RAJA, D. SENTHIL;SUNDARARAJAN, P.
    • Journal of applied mathematics & informatics
    • /
    • v.40 no.1_2
    • /
    • pp.305-316
    • /
    • 2022
  • We study the existence and uniqueness of solutions for a class of boundary value problems of nonlinear fractional order differential equations involving the Caputo fractional derivative by employing the Banach's contraction principle and the Schauder's fixed point theorem. In addition, an example is given to demonstrate the application of our main results.

THREE-POINT BOUNDARY VALUE PROBLEMS FOR HIGHER ORDER NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.1_2
    • /
    • pp.221-228
    • /
    • 2013
  • The method of upper and lower solutions and the generalized quasilinearization technique is developed for the existence and approximation of solutions to boundary value problems for higher order fractional differential equations of the type $^c\mathcal{D}^qu(t)+f(t,u(t))=0$, $t{\in}(0,1),q{\in}(n-1,n],n{\geq}2$ $u^{\prime}(0)=0,u^{\prime\prime}(0)=0,{\ldots},u^{n-1}(0)=0,u(1)={\xi}u({\eta})$, where ${\xi},{\eta}{\in}(0,1)$, the nonlinear function f is assumed to be continuous and $^c\mathcal{D}^q$ is the fractional derivative in the sense of Caputo. Existence of solution is established via the upper and lower solutions method and approximation of solutions uses the generalized quasilinearization technique.

HIGHER ORDER NONLOCAL NONLINEAR BOUNDARY VALUE PROBLEMS FOR FRACTIONAL DIFFERENTIAL EQUATIONS

  • Khan, Rahmat Ali
    • Bulletin of the Korean Mathematical Society
    • /
    • v.51 no.2
    • /
    • pp.329-338
    • /
    • 2014
  • In this paper, we study the method of upper and lower solutions and develop the generalized quasilinearization technique for the existence and approximation of solutions to some three-point nonlocal boundary value problems associated with higher order fractional differential equations of the type $$^c{\mathcal{D}}^q_{0+}u(t)+f(t,u(t))=0,\;t{\in}(0,1)$$ $$u^{\prime}(0)={\gamma}u^{\prime}({\eta}),\;u^{\prime\prime}(0)=0,\;u^{\prime\prime\prime}(0)=0,{\ldots},u^{(n-1)}(0)=0,\;u(1)={\delta}u({\eta})$$, where, n-1 < q < n, $n({\geq}3){\in}\mathbb{N}$, 0 < ${\eta},{\gamma},{\delta}$ < 1 and $^c\mathcal{D}^q_{0+}$ is the Caputo fractional derivative of order q. The nonlinear function f is assumed to be continuous.

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.