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UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH

THEIR HOMOGENEOUS AND LINEAR DIFFERENTIAL

POLYNOMIALS SHARING A SMALL FUNCTION

Indrajit Lahiri and Bipul Pal∗

Abstract. In this paper we study the uniqueness question of meromor-
phic functions whose certain differential polynomials share a small func-
tion.

1. Introduction, definitions and results

Let f be a meromorphic function in the open complex plane C. We use the
standard notations of Nevanlinna’s value distribution theory such as m(r, f),
N(r, f), N(r, f), T (r, f) etc. as available in [2]. We denote by S(r, f) any
quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ possibly outside a set of
finite linear measure.

A meromorphic function a = a(z) is called a small function of f if T (r, a) =
S(r, f). We denote by S(f) the collection of all small functions of f . Clearly
C ⊂ S(f).

Let f and g be two meromorphic functions in C and a ∈ S(f)∩S(g). We say
that f and g share the function a = a(z) CM (counting multiplicities) or IM
(ignoring multiplicities) if f − a and g − a have the same set of zeros counting
multiplicities or ignoring multiplicities respectively.

For a ∈ C ∩ {∞} the quantities

δ(a; f) = 1− lim sup
r→∞

N(r, a; f)

T (r, f)
and Θ(a; f) = 1− lim sup

r→∞

N(r, a; f)

T (r, f)

are respectively called the deficiency and ramification index of a for the function
f , where N(r, a; f) = N(r, 1

f−a ), N(r, a; f) = N(r, 1
f−a ), N(r,∞; f) = N(r, f)

and N(r,∞; f) = N(r, f).

Also ρ(f) = lim supr→∞
log T (r,f)

log r and τ(f) = lim supr→∞
T (r,f)
rρ(f)

(0 < ρ(f) <

∞) are respectively called the order and type of f . A meromorphic function f
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is said to be of minimal type if τ(f) = 0, which can be found, for example, in
[2, pp. 16–17].

In 1976 Yang [10] asked to investigate the relationship between two noncon-
stant entire functions f and g if f and g share the value 0 CM and f (1) and
g(1) share the value 1 CM. Many authors, including Shibazaki [9], Yi [13, 14],
Yang and Yi [11], Hua [4], Mues and Reinders [8], Lahiri [5, 6], studied the
question. Further, Yi [16], Chen, Wang and Zhang [1], Li and Li [7] and others
also worked on this question and its extensions.

In 1990 Yi [13] proved the following result.

Theorem A ([13]). Let f and g be two nonconstant entire functions such that

f , g share the value 0 CM and f (n), g(n) share the value 1 CM. If δ(0; f) > 1
2 ,

then either f ≡ g or f (n) · g(n) ≡ 1.

Shibazaki [9] did not consider the sharing of zeros and proved the following
theorem.

Theorem B ([9]). Let f and g be two nonconstant entire functions of finite

order such that f (1), g(1) share the value 1 CM. If δ(0; f) > 0 and 0 is a Picard

exceptional value of g, then either f ≡ g or f (1) · g(1) ≡ 1.

Yi and Yang [17], Hua [4] and many others improved Theorem B in different
manners. Yi and Yang [17] proved the following result.

Theorem C ([17]). Let f and g be two nonconstant meromorphic functions

such that f (n) and g(n) share the value 1 CM. If Θ(∞; f) = Θ(∞; g) = 1 and

δ(0; f) + δ(0; g) > 1, then either f ≡ g or f (n) · g(n) ≡ 1.

Also Yi [16] proved the following improvement of Theorem B.

Theorem D ([16]). Let f and g be two nonconstant meromorphic functions

such that f (n) and g(n) share the values 1 and ∞ CM. If

δ(0; f) + δ(0; g) + (n+ 2)Θ(∞; f) > n+ 3,

then either f ≡ g or f (n) · g(n) ≡ 1.

In [16] Yi proved some others results which improve previous ones.

Theorem E ([16]). Let f and g be two nonconstant meromorphic functions

such that f (n) and g(n) share the value 1 CM. If

2δ(0; f) + (n+ 4)Θ(∞; f) > n+ 5 and

2δ(0; g) + (n+ 4)Θ(∞; g) > n+ 5,

then either f ≡ g or f (n) · g(n) ≡ 1.

Theorem F ([16]). Let f and g be two nonconstant meromorphic functions

such that f (n) and g(n) share the value 1 IM. If

5δ(0; f) + (4n+ 7)Θ(∞; f) > 4n+ 11 and
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5δ(0; g) + (4n+ 7)Θ(∞; g) > 4n+ 11,

then either f ≡ g or f (n) · g(n) ≡ 1.

In 1990 Yi [14] considered the uniqueness of entire functions when they share
the value 0 CM and that their derivatives share the value 1 CM. The following
result of H. X. Yi [14] is an answer to the question of C. C. Yang under a
general setting.

Theorem G ([14]). Let f and g be two nonconstant entire functions and let

k be a positive integer. If f and g share the value 0 CM, f (k) and g(k) share

the value 1 CM and δ(0; f) > 1
2 , then either f ≡ g or f (k) · g(k) ≡ 1.

Recently Li and Li [7] considered the problem of replacing the derivatives
by linear differential polynomials generated by entire functions.

Let h be a nonconstant meromorphic function. An expression of the form

(1.1) P (h) = h(k) + ak−1h
(k−1) + · · ·+ a1h

(1) + a0h,

where a0, a1, . . . , ak−1 are complex constants and k is a positive integer, is
called a linear differential polynomial generated by h.

Considering following example Li and Li [7] exhibited that it is not possible
to replace f (k) and g(k) in Theorem G respectively by P (f) and P (g).

Example 1.1 ([7]). Let f = 1
2e

−2z and g = e−2z. If P (h) = h(2) +2h(1), then
f , g share the value 0 CM, P (f), P (g) share the value 1 CM and δ(0; f) = 1
but f 6≡ g and P (f) · P (g) 6≡ 1.

We recall the following results from Li and Li[7].

Theorem H ([7]). Let f and g be two nonconstant entire functions. Suppose

that f and g share the value 0 CM, P (f) and P (g) share the value 1 CM and

δ(0; f) > 1
2 . If ρ(f) 6= 1, then f ≡ g unless P (f) · P (g) ≡ 1.

Theorem I ([7]). Let f and g be two nonconstant entire functions. Suppose

that f and g share the value 0 CM, P (f) and P (g) share the value 1 IM and

δ(0; f) > 4
5 . If ρ(f) 6= 1, then f ≡ g unless P (f) · P (g) ≡ 1.

We can easily note that in Example 1.1, P (f) ≡ 0 and P (g) ≡ 0. On
the other hand, in the following example we see that if P (f) and P (g) are
nonconstant, then for an entire function of order 1 the conclusion of Theorem
H may hold.

Example 1.2. Let f = ez and g = e−z and P (h) = h(3) − h(2) − h(1). Then f
and g share the value 0 CM, P (f) = −ez and P (g) = −e−z share the value 1
CM and δ(0; f) = 1. Also P (f) · P (g) ≡ 1.

In the present paper we extend the results of Li and Li [7] by including the
class of entire functions of order 1. We also extend some previous results to
homogeneous differential polynomials.
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Let h be a nonconstant meromorphic function. An expression of the form

(1.2) P (h) =

n
∑

k=1

ak

p
∏

j=0

(h(j))lkj ,

where ak ∈ S(h) for k = 1, 2, . . . , n and lkj are nonnegative integers for k =
1, 2, . . . , n; j = 0, 1, 2, . . . , p and d =

∑p
j=0lkj for k = 1, 2, . . . , n, is called

a homogeneous differential polynomial of degree d generated by h. Also we
denote by Q the quantity Q = max1≤k≤n

∑p
j=0jlkj .

Let f and g be two nonconstant meromorphic functions. When we consider
P (f) and P (g), as defined by (1.2), and generated by f and g respectively, then
we understand that the coefficients ak (k = 1, 2, . . . , n) belong to S(f) ∩ S(g).

We now state the results of the paper.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions and

a = a(z) ∈ S(f) ∩ S(g) and a 6≡ 0,∞. Suppose that P (f) and P (g), as defined

by (1.2), are nonconstant. If P (f) and P (g) share a = a(z) IM and

(1.3)

min

{

5δ(0; f) +
4Q+ 7

d
Θ(∞; f), 5δ(0; g) +

4Q+ 7

d
Θ(∞; g)

}

>
4Q+ 4d+ 7

d
,

then either P (f) ≡ P (g) or P (f) · P (g) ≡ a2.

Remark 1. If P (f) and P (g) share a = a(z) CM, then the condition (1.3) of
Theorem 1.1 can be replaced by the following

min

{

2δ(0; f) +
Q+ 4

d
Θ(∞; f), 2δ(0; g) +

Q+ 4

d
Θ(∞; g)

}

>
Q+ d+ 4

d
.

Theorem 1.2. Let f and g be two nonconstant meromorphic functions and

a = a(z)(6≡ 0,∞) ∈ S(f) ∩ S(g). Suppose that P (f) and P (g), as defined by

(1.2), are nonconstant. If f and g share the values 0 CM and ∞ IM and P (f),
P (g) share a = a(z) IM and

5δ(0; f) +
4Q+ 7

d
Θ(∞; f) >

4Q+ 4d+ 7

d
,

then either P (f) ≡ P (g) or P (f) · P (g) ≡ a2.

Theorem 1.3. Let f and g be two nonconstant entire functions and a =
a(z)(6≡ 0,∞) ∈ S(f) ∩ S(g). Suppose that P (f) and P (g), as defined by (1.2),
are nonconstant. If f and g share the value 0 CM and P (f), P (g) share

a = a(z) CM and δ(0; f) > 1
2 , then either P (f) ≡ P (g) or P (f) · P (g) ≡ a2.

Remark 2. If P (f) and P (g) share a = a(z) IM, then the condition δ(0; f) > 1
2

of Theorem 1.3 has to be replaced by δ(0; f) > 4
5 .

As the consequences of the main results we obtain the following corollaries.



UNIQUENESS OF MEROMORPHIC FUNCTIONS 829

Corollary 1.1. Let f and g be two nonconstant meromorphic functions. Sup-

pose that α(f (k))n and α(g(k))n are nonconstant and share the value 1 IM,

where α(6= 0) is a constant and k, n are positive integers. If

min

{

5δ(0; f) +
4kn+7

n
Θ(∞; f), 5δ(0; g) +

4kn+7

n
Θ(∞; g)

}

>
4kn+4n+7

n
,

then either α2(f (k)g(k))n ≡ 1 or f ≡ ωg, where ωn = 1.
If, in addition, f(z0) = g(z0) 6= 0 for some z0 ∈ C, then ω = 1.

Corollary 1.2. Let f and g be two nonconstant entire functions such that

P (f) and P (g), as defined by (1.1), are nonconstant. Suppose that f and g
share the value 0 CM and P (f), P (g) share the value 1 CM. If δ(0; f) > 1

2 ,

then either f ≡ g or P (f) ·P (g) ≡ 1 under any one of the following hypotheses:

(i) ρ(f) 6= 1,
(ii) ρ(f) = 1 and

(a) f has at most a finite number of zeros, or

(b) f has infinitely many zeros and f is of minimal type.

We now recall some well known notations of the value distribution theory.
Let F and G be two nonconstant meromorphic functions, which share the
value 1 IM. We denote by NL(r, 1;F ) the reduced counting function of those
zeros of F − 1 in {z :| z |< r}, which have larger multiplicities than those of

the corresponding zeros of G − 1. Also we denote by N
1)
E (r, 1;F ) the reduced

counting function of common simple zeros of F − 1 and G− 1 in {z :| z |< 1},
and denote by N

(2

E (r, 1;F ) the counting function of those common multiple
zeros of F − 1 and G − 1 in {z :| z |< r}, where each such common multiple
zero of F − 1 and G− 1 has the same multiplicity related to F − 1 and G− 1.

Likewise we define NL(r, 1;G), N
1)
E (r, 1;G) and N

(2

E (r, 1;G).
Also we denote by N1)(r, 0;F ) the counting function of simple zeros of F

and by N (2(r, 0;F ) the reduced counting function of multiple zeros of F in
{z :| z |< r}.

2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. Let f be a nonconstant meromorphic function and P (f) be de-

fined by (1.2). Then

T (r, P ) ≤ dT (r, f) +QN(r,∞; f) + S(r, f)

and

N(r, 0;P ) ≤ T (r, P )− dT (r, f) + dN(r, 0; f) + S(r, f)

≤ QN(r,∞; f) + dN(r, 0; f) + S(r, f).
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Proof. Since

N(r, P ) ≤ dN(r, f) +QN(r,∞; f) + S(r, f) and

m(r, f) ≤ m(r,
P

fd
) +m(r, fd) = dm(r, f) + S(r, f),

we get

(2.1) T (r, P ) ≤ dT (r, f) +QN(r,∞; f) + S(r, f).

Now

m(r, 0; fd) ≤ m(r, 0;P ) +m(r,
P

fd
) = m(r, 0;P ) + S(r, f)

and so

T (r, fd)−N(r, 0; fd) ≤ T (r, P )−N(r, 0;P ) + S(r, f)

i.e.,

(2.2) N(r, 0;P ) ≤ T (r, P )− dT (r, f) + dN(r, 0; f) + S(r, f).

The lemma follows from (2.1) and (2.2). �

Lemma 2.2 ([16]). Let F and G be two nonconstant meromorphic functions

such that F and G share 1 IM. Then

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) +N
1)
E (r, 1;F )

+NL(r, 1;F )−N0(r,∞;F (1))−N0(r, 0;G
(1)) + S(r, F ) + S(r,G),

where N0(r, 0;F
(1)) denotes the counting function corresponding to the zeros

of F (1) that are not zeros of F and F − 1, N0(r, 0;G
(1)) denotes the counting

function corresponding to the zeros of G(1) that are not zeros of G and G− 1.

Lemma 2.3 ([2, p. 47]). Let f be a nonconstant meromorphic function and

a1, a2, a3 be three distinct members of S(f). Then

T (r, f) ≤ N(r, 0; f − a1) +N(r, 0; f − a2) +N(r, 0; f − a3) + S(r, f).

Lemma 2.4 ([3]). Let f be a transcendental meromorphic function and P (f),
defined by (1.2), be nonconstant and d ≥ 1. Then

dT (r, f) ≤ N(r,∞; f)+N(r, 1;P (f))+dN(r, 0; f)−N0(r, 0; (P (f))(1))+S(r, f),

where N0(r, 0; (P (f))(1)) denotes the counting function corresponding to the

zeros of (P (f))(1) which are not the zeros of P (f) and P (f)− 1.

Remark 3. In fact Lemma 2.4 is a special case of Lemma 1 [3].

Lemma 2.5 ([12, p. 92]). Suppose that f1, f2,. . . ,fn (n ≥ 3) are meromorphic

functions which are not constants except for fn. Furthermore, let
∑n

j=1fj ≡ 1.
If fn 6≡ 0 and

n
∑

j=1

N(r, 0; fj) + (n− 1)
n
∑

j=1

N(r,∞; fj) < {λ+ o(1)}T (r, fk),
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where r ∈ I, a set of infinite linear measure, k = 1, 2, . . . , n− 1 and 0 < λ < 1,
then fn ≡ 1.

3. Proof of theorems and corollaries

Proof of Theorem 1.1. Let F = P (f)
a and G = P (g)

a . Then F and G share 1 IM
and so by Lemma 2.2 we get

T (r, F ) ≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 0;G) +N(r,∞;G) +N
1)
E (r, 1;F )

+NL(r, 1;F )−N0(r, 0;F
(1))−N0(r, 0;G

(1)) + S(r, F ) + S(r,G).(3.1)

Let

H =

(

F (2)

F (1)
− 2F (1)

F − 1

)

−
(

G(2)

G(1)
− 2G(1)

G− 1

)

.

We suppose that H 6≡ 0. Then by a simple calculation we see that

N
1)
E (r, 1;F ) ≤ N(r, 0;H)

≤ T (r,H)

≤ N(r,∞;H) + S(r, F ) + S(r,G)(3.2)

and

N(r,∞;H) ≤ N (2(r, 0;F ) +N(r,∞;F ) +N (2(r, 0;G) +N(r,∞;G)

+NL(r, 1;F ) +NL(r, 1;G) +N0(r, 0;F
(1)) +N0(r, 0;G

(1)).(3.3)

Noting that N(r, 0;F )+N (2(r, 0;F ) ≤ N(r, 0;F ) and combining (3.1), (3.2)
and (3.3) we get

T (r, F ) ≤ N(r, 0;F ) + 2N(r,∞;F ) +N(r, 0;G) + 2N(r,∞;G)

+ 2NL(r, 1;F ) +NL(r, 1;G) + S(r, F ) + S(r,G).(3.4)

Now by Lemma 2.1 and (3.4) we get

N(r, 0;F ) ≤ T (r, F )− dT (r, F ) + dN(r, 0; f) + S(r, f)

≤ N(r, 0;F ) + 2N(r,∞;F ) +QN(r,∞; g) + dN(r, 0; g)

+ 2N(r,∞; g) + 2NL(r, 1;F ) +NL(r, 1;G)− dT (r, f)

+ dN(r, 0; f) + S(r, f) + S(r, g)

and so

dT (r, f) ≤ dN(r, 0; f) + 2N(r,∞; f) + dN(r, 0; g) + (Q+ 2)N(r,∞; g)

+ 2NL(r, 1;F ) +NL(r, 1;G) + S(r, f) + S(r, g).(3.5)

Again using Lemma 2.1 we obtain

NL(r, 1;F ) ≤ N(r, 1;F )−N(r, 1;F )

≤ N(r, 0;F (1))

≤ N(r, 0;F ) +N(r,∞;F ) + S(r, F )
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≤ dN(r, 0; f) + (Q+ 1)N(r,∞; f) + S(r, f).(3.6)

Similarly

(3.7) NL(r, 1;G) ≤ dN(r, 0; g) + (Q+ 1)N(r,∞; g) + S(r, g).

Combining (3.5), (3.6) and (3.7) we obtain

T (r, f) ≤ 3N(r, 0; f) +
2Q+ 4

d
N(r,∞; f) + 2N(r, 0; g)

+
2Q+ 3

d
N(r,∞; g) + S(r, f) + S(r, g).(3.8)

Likewise we have

T (r, g) ≤ 3N(r, 0; g) +
2Q+ 4

d
N(r,∞; g) + 2N(r, 0; f)

+
2Q+ 3

d
N(r,∞; f) + S(r, f) + S(r, g).(3.9)

Adding (3.8) and (3.9) we obtain

T (r, f) + T (r, g) ≤ 5N(r, 0; f) +
4Q+ 7

d
N(r,∞; f) + 5N(r, 0; g)

+
4Q+ 7

d
N(r,∞; g) + S(r, f) + S(r, g),

which implies a contradiction to the hypothesis. Therefore H ≡ 0 and so on
integration we get

1

G− 1
=

A

F − 1
+B,

where A(6= 0) and B are constants. This gives

(3.10) G =
(B + 1)F + (A−B − 1)

BF +A−B

and

(3.11) F =
(B −A)G+ (A−B − 1)

BG− (B + 1)
.

We now consider the following three cases.
Case 1: Let B 6= 0,−1. From (3.11) we have N(r, B+1

B ;G) = N(r,∞;F ).
Now by the second fundamental theorem and Lemma 2.2 we get

T (r,G) ≤ N(r, 0;G) +N(r,
B + 1

B
;G) +N(r,∞;G) + S(r,G)

≤ T (r,G)− dT (r, g) + dN(r, 0; g) +N(r,∞;F ) +N(r,∞;G) + S(r, g)

i.e.,

(3.12) dT (r, g) ≤ dN(r, 0; g) +N(r,∞; f) +N(r,∞; g) + S(r, g).
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If A−B − 1 6= 0, from (3.10) we have N(r, B+1−A
B+1 ;F ) = N(r, 0;G). Hence

by the second fundamental theorem and Lemma 2.2 we get

T (r, F ) ≤ N(r, 0;F ) +N(r,
B + 1−A

B + 1
;F ) +N(r,∞;F ) + S(r, F )

≤ T (r, F )− dT (r, f) + dN(r, 0; f) +N(r, 0;G) +N(r,∞; f) + S(r, f)

i.e.,

dT (r, f) ≤ dN(r, 0; f) + dN(r, 0; g) +N(r,∞; f)

+QN(r,∞; g) + S(r, f) + S(r, g).(3.13)

Combining (3.12) and (3.13) we obtain

T (r, f) + T (r, g) ≤ N(r, 0; f) +
2

d
N(r,∞; f) + 2N(r, 0; g)

Q+ 1

d
N(r,∞; g) + S(r, f) + S(r, g),

a contradiction.
Hence A−B − 1 = 0 and from (3.10) we get

G =
(B + 1)F

BF + 1
.

Therefore N(r, 0;F + 1
B ) = N(r,∞;G). Again by the second fundamental

theorem and Lemma 2.2 we obtain

T (r, F ) ≤ N(r, 0;F ) +N(r, 0;F +
1

B
) +N(r,∞;F ) + S(r, F )

≤ T (r, F )− dT (r, f) + dN(r, 0; f) +N(r,∞; g) +N(r,∞; f) + S(r, f)

i.e.,

(3.14) dT (r, f) ≤ dN(r, 0; f) +N(r,∞; f) +N(r,∞; g) + S(r, f).

Combining (3.12) and (3.14) we have

T (r, f) + T (r, g) ≤ N(r, 0; f) +N(r, 0; g) +
2

d
N(r,∞; f)

+
2

d
N(r,∞; g) + S(r, f) + S(r, g),

a contradiction.
Case 2: We suppose that B = 0. From (3.10) and (3.11) we have

G =
F +A− 1

A
and F = AG+ 1−A.

If A− 1 6= 0, then it follows that

N(r, 1−A;F ) = N(r, 0;G) and N(r,
A− 1

A
;G) = N(r, 0;F ).

Using the similar argument of Case 1 we arrive at a contradiction. Therefore
A− 1 = 0 and so P (f) ≡ P (g).
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Case 3: We suppose that B = −1. From (3.10) and (3.11) we get

G =
A

A+ 1− F
and F =

(A+ 1)G−A

G
.

If A+ 1 6= 0, we obtain

N(r, A+ 1;F ) = N(r,∞;G) and N(r,
A

A+ 1
;G) = N(r, 0;F ).

Using the similar argument of Case 1 we arrive at a contradiction. Therefore
A+ 1 = 0 and so P (f)P (g) ≡ a2. This proves the theorem. �

Proof of Theorem 1.2. Let F = P (f)
a and G = P (g)

a . Then F and G share 1 IM
and so by Lemma 2.2 and Lemma 2.5 we get

dT (r, f) ≤ N(r,∞; f) +N(r, 1;F ) + dN(r, 0; f) + S(r, f)

= N(r,∞; g) +N(r, 1;G) + dN(r, 0; g) + S(r, f)

≤ (1 + 2d+Q)T (r, g) + S(r, f) + S(r, g).(3.15)

Similarly

(3.16) dT (r, g) ≤ (1 + 2d+Q)T (r, f) + S(r, f) + S(r, g).

From (3.15) and (3.16) we get S(r, f) = S(r, g). The rest of the proof is similar
to that of Theorem 1.1. This proves the theorem. �

Proof of Corollary 1.1. By Theorem 1.1 we get either α2(f (k)g(k))n ≡ 1 or
(f (k))n ≡ (g(k))n. We suppose that (f (k))n ≡ (g(k))n. Then f (k) = ωg(k),
where ω is a constant satisfying ωn = 1. Integrating k times we obtain f =
ωg + p, where p is a polynomial of degree at most k − 1. From the hypothesis
it is clear that f and g are transcendental meromorphic functions. If p 6≡ 0, by
Lemma 2.3 we get

T (r, f) ≤ N(r, 0; f) +N(r, 0; f − p) +N(r,∞; f) + S(r, f)

= N(r, 0; f) +N(r, 0; g) +N(r,∞; f) + S(r, f)(3.17)

and

T (r, g) ≤ N(r, 0; g) +N(r, 0; g +
p

ω
) +N(r,∞; g) + S(r, g)

= N(r, 0; g) +N(r, 0; f) +N(r,∞; g) + S(r, g).(3.18)

Combining (3.17) and (3.18) we obtain

T (r, f) + T (r, g) ≤ 2N(r, 0; f) + 2N(r, 0; g) +N(r,∞; f)

+N(r,∞; g) + S(r, f) + S(r, g),

which contradicts the hypothesis. Therefore p ≡ 0 and so f ≡ ωg.
If, further, f(z0) = g(z0) 6= 0 for some z0 ∈ C, then clearly ω = 1 and so

f ≡ g. This proves the corollary. �
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Proof of Corollary 1.2. By Theorem 1.3 we get either P (f) ≡ P (g) or P (f) ·
P (g) ≡ 1. Let P (f) ≡ P (g) so that P (g − f) ≡ 0. Then

(3.19) g − f =
m
∑

j=1

pj(z)e
αjz,

where m(≤ k) is a positive integer, αj ’s are distinct complex constants and
pj(z)’s are nonzero polynomials.

Since f and g share 0 CM, we can put g = f · eh, where h is an entire
function.

Let eh 6≡ 1, otherwise we are done. So from (3.19) we get

f =

∑m
j=1 pj(z)e

αjz

eh − 1
.

Since f is entire, we see that N(r, 0; eh − 1) ≤ N(r, 0;
∑m

j=1 pj(z)e
αjz) and by

the second fundamental theorem we get

T (r, eh) ≤ N(r,∞; eh) +N(r, 0; eh) +N(r, 0; eh − 1) + S(r, eh)

≤ N



r, 0;

m
∑

j=1

pj(z)e
αjz



+ S(r, eh)

≤ T



r,

m
∑

j=1

pj(z)e
αjz



+ S(r, eh)

≤
m
∑

j=1

{T (r, pj(z)) + T (r, eαjz)}+ S(r, eh)

= O(log r) +O(r) + S(r, eh).(3.20)

If h is transcendental or a polynomial of degree at least 2, then from (3.20)
we see that T (r, eh) = S(r, eh), contradiction. Hence h is a polynomial of
degree at most 1.

First we assume that h is a constant. Then P (f) ≡ P (g) ≡ ehP (f) and so
eh ≡ 1, which contradicts our assumption.

Next we assume that h(z) = az+ b, where a(6= 0) and b are constants. Then

f =

∑m
j=1 pj(z)e

αjz

eaz+b − 1
and so ρ(f) ≤ 1.

We now consider the following cases.
Case 1: Let ρ(f) < 1.
Then by Milloux basic result [2, Theorem 3.2, p. 57] we get

T (r, f) ≤ N(r, 0; f) +N(r, 1;P (f)) + S(r, f)

= N(r, 0; g) +N(r, 1;P (g)) + S(r, f)

≤ T (r, g) + T (r, P (g)) + S(r, f)
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= T (r, g) +m(r, P (g)) + S(r, f)

≤ T (r, g) +m(r, g) +m

(

r,
P (g)

g

)

+ S(r, f)

= 2T (r, g) + S(r, g) + S(r, f).(3.21)

Similarly

(3.22) T (r, g) ≤ 2T (r, f) + S(r, f) + S(r, g).

Since f and so g is of finite order, from (3.21) and (3.22) we see that ρ(f) =
ρ(g). Therefore

ρ(eaz+b) = ρ

(

g

f

)

≤ max{ρ(f), ρ(g)} < 1,

which is impossible as a 6= 0.
Case 2: Let ρ(f) = 1.

We now consider the following subcases.
Subcase 2.1: Let f have at most a finite number of zeros.
We put f(z) = q(z)ecz+d, where q(z) is a polynomial. Then

g(z) = q(z)e(a+c)z+(b+d)

and so P (f) ≡ P (g) implies

q1(z)e
cz+d = q2(z)e

(a+c)z+(b+d),

where q1, q2 are polynomials. This implies q2(z)e
az+b = q1(z), which is impos-

sible as a 6= 0.
Subcase 2.2: Let f have infinitely many zeros and f be of minimal type.
We put

Hj(z) = −pj(z)e
αjz

f
for 1 ≤ j ≤ m, and Hm+1(z) = eaz+b.

Then f =

∑m
j=1pj(z)e

αjz

eaz+b − 1
implies

(3.23)

m+1
∑

j=1

Hj(z) ≡ 1.

Let one of αj ’s, say α1 be zero. Then H1 6≡ 0 and we rewrite (3.23) as

m+1
∑

j=2

Hj(z) +H1(z) ≡ 1.

Now
m+1
∑

j=1

N(r, 0;Hj) +m

m+1
∑

j=1

N(r,∞;Hj) =

m+1
∑

j=1

N(r, 0; pj) +m2N(r, 0; f)

= O(log r) +m2N(r, 0; f).(3.24)
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Since eαjz = −Hj(z)
pj(z)

f , we get

T (r, eαjz) ≤ T (r,Hj) + T (r, f) +O(log r).

This implies
|αj |
π

≤ T (r,Hj)

r
+

T (r, f)

r
+ o(1)

and so

lim inf
r→∞

T (r,Hj)

r
+ lim sup

r→∞

T (r, f)

r
≥ |αj |

π
.

Since f is of minimal type, we get

lim inf
r→∞

T (r,Hj)

r
≥ K for j = 2, 3, . . . ,m,

where K = min2≤j≤m
|αj |
π > 0.

Hence for j = 1, 2, . . . ,m we get

lim sup
r→∞

N(r, 0; f)

T (r,Hj)
≤ lim sup

r→∞

T (r, f)

r
· lim sup

r→∞

r

T (r,Hj)
= 0.

Also

lim sup
r→∞

N(r, 0; f)

T (r,Hm+1)
≤ π

|a| lim sup
r→∞

T (r, f)

r
= 0.

So from (3.24) we see that

m+1
∑

j=1

N(r, 0;Hj) +m

m+1
∑

j=1

N(r,∞;Hj) < {λ+ o(1)}T (r,Hk)

for k = 2, 3, . . . ,m+ 1, where λ (0 < λ < 1) is a suitable constant.
Therefore by Lemma 2.5 we get H1(z) ≡ 1, which is impossible as ρ(f) = 1.
So, αj 6= 0 for j = 1, 2, . . . ,m. Now adopting the same technique as above

we get Hm+1(z) ≡ 1, which contradicts our assumption that eh 6≡ 1. This
proves the corollary. �

Remark 4. It is an interesting open problem to examine the validity of corollary
1.2 for entire functions f and g where f is of unit order with nonminimal type
and f has infinitely many zeros.
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