UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH THEIR HOMOGENEOUS AND LINEAR DIFFERENTIAL POLYNOMIALS SHARING A SMALL FUNCTION

Indrajit Lahiri and Bipul Pal*

Abstract

In this paper we study the uniqueness question of meromorphic functions whose certain differential polynomials share a small function.

1. Introduction, definitions and results

Let f be a meromorphic function in the open complex plane \mathbb{C}. We use the standard notations of Nevanlinna's value distribution theory such as $m(r, f)$, $N(r, f), \bar{N}(r, f), T(r, f)$ etc. as available in [2]. We denote by $S(r, f)$ any quantity satisfying $S(r, f)=o\{T(r, f)\}$ as $r \rightarrow \infty$ possibly outside a set of finite linear measure.

A meromorphic function $a=a(z)$ is called a small function of f if $T(r, a)=$ $S(r, f)$. We denote by $S(f)$ the collection of all small functions of f. Clearly $\mathbb{C} \subset S(f)$.

Let f and g be two meromorphic functions in \mathbb{C} and $a \in S(f) \cap S(g)$. We say that f and g share the function $a=a(z)$ CM (counting multiplicities) or IM (ignoring multiplicities) if $f-a$ and $g-a$ have the same set of zeros counting multiplicities or ignoring multiplicities respectively.

For $a \in \mathbb{C} \cap\{\infty\}$ the quantities

$$
\delta(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{N(r, a ; f)}{T(r, f)} \quad \text { and } \quad \Theta(a ; f)=1-\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, a ; f)}{T(r, f)}
$$

are respectively called the deficiency and ramification index of a for the function f, where $N(r, a ; f)=N\left(r, \frac{1}{f-a}\right), \bar{N}(r, a ; f)=\bar{N}\left(r, \frac{1}{f-a}\right), N(r, \infty ; f)=N(r, f)$ and $\bar{N}(r, \infty ; f)=\bar{N}(r, f)$.

Also $\rho(f)=\lim \sup _{r \rightarrow \infty} \frac{\log T(r, f)}{\log r}$ and $\tau(f)=\lim \sup _{r \rightarrow \infty} \frac{T(r, f)}{r^{\rho(f)}}(0<\rho(f)<$ $\infty)$ are respectively called the order and type of f. A meromorphic function f

Received April 15, 2016; Revised August 8, 2016.
2010 Mathematics Subject Classification. 30D35.
Key words and phrases. meromorphic function, entire function, homogeneous differential polynomial, value sharingm.

* The work of the second author was supported by DAE (NBHM Fellowship), India.
is said to be of minimal type if $\tau(f)=0$, which can be found, for example, in [2, pp. 16-17].

In 1976 Yang [10] asked to investigate the relationship between two nonconstant entire functions f and g if f and g share the value 0 CM and $f^{(1)}$ and $g^{(1)}$ share the value 1 CM. Many authors, including Shibazaki [9], Yi [13, 14], Yang and Yi [11], Hua [4], Mues and Reinders [8], Lahiri [5, 6], studied the question. Further, Yi [16], Chen, Wang and Zhang [1], Li and Li [7] and others also worked on this question and its extensions.

In 1990 Yi [13] proved the following result.
Theorem A ([13]). Let f and g be two nonconstant entire functions such that f, g share the value $0 C M$ and $f^{(n)}, g^{(n)}$ share the value 1 CM. If $\delta(0 ; f)>\frac{1}{2}$, then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.

Shibazaki [9] did not consider the sharing of zeros and proved the following theorem.

Theorem B ([9]). Let f and g be two nonconstant entire functions of finite order such that $f^{(1)}, g^{(1)}$ share the value 1 CM. If $\delta(0 ; f)>0$ and 0 is a Picard exceptional value of g, then either $f \equiv g$ or $f^{(1)} \cdot g^{(1)} \equiv 1$.

Yi and Yang [17], Hua [4] and many others improved Theorem B in different manners. Yi and Yang [17] proved the following result.

Theorem C ([17]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If $\Theta(\infty ; f)=\Theta(\infty ; g)=1$ and $\delta(0 ; f)+\delta(0 ; g)>1$, then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.

Also Yi [16] proved the following improvement of Theorem B.
Theorem D ([16]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the values 1 and $\infty C M$. If

$$
\delta(0 ; f)+\delta(0 ; g)+(n+2) \Theta(\infty ; f)>n+3,
$$

then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.
In [16] Yi proved some others results which improve previous ones.
Theorem E ([16]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 CM. If

$$
\begin{aligned}
& 2 \delta(0 ; f)+(n+4) \Theta(\infty ; f)>n+5 \text { and } \\
& 2 \delta(0 ; g)+(n+4) \Theta(\infty ; g)>n+5
\end{aligned}
$$

then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.
Theorem F ([16]). Let f and g be two nonconstant meromorphic functions such that $f^{(n)}$ and $g^{(n)}$ share the value 1 IM. If

$$
5 \delta(0 ; f)+(4 n+7) \Theta(\infty ; f)>4 n+11 \text { and }
$$

$$
5 \delta(0 ; g)+(4 n+7) \Theta(\infty ; g)>4 n+11
$$

then either $f \equiv g$ or $f^{(n)} \cdot g^{(n)} \equiv 1$.
In 1990 Yi [14] considered the uniqueness of entire functions when they share the value 0 CM and that their derivatives share the value 1 CM . The following result of H . X. Yi [14] is an answer to the question of C. C. Yang under a general setting.

Theorem G ([14]). Let f and g be two nonconstant entire functions and let k be a positive integer. If f and g share the value $0 C M, f^{(k)}$ and $g^{(k)}$ share the value $1 C M$ and $\delta(0 ; f)>\frac{1}{2}$, then either $f \equiv g$ or $f^{(k)} \cdot g^{(k)} \equiv 1$.

Recently Li and $\mathrm{Li}[7]$ considered the problem of replacing the derivatives by linear differential polynomials generated by entire functions.

Let h be a nonconstant meromorphic function. An expression of the form

$$
\begin{equation*}
P(h)=h^{(k)}+a_{k-1} h^{(k-1)}+\cdots+a_{1} h^{(1)}+a_{0} h, \tag{1.1}
\end{equation*}
$$

where $a_{0}, a_{1}, \ldots, a_{k-1}$ are complex constants and k is a positive integer, is called a linear differential polynomial generated by h.

Considering following example Li and $\mathrm{Li}[7]$ exhibited that it is not possible to replace $f^{(k)}$ and $g^{(k)}$ in Theorem G respectively by $P(f)$ and $P(g)$.
Example 1.1 ([7]). Let $f=\frac{1}{2} e^{-2 z}$ and $g=e^{-2 z}$. If $P(h)=h^{(2)}+2 h^{(1)}$, then f, g share the value $0 \mathrm{CM}, P(f), P(g)$ share the value 1 CM and $\delta(0 ; f)=1$ but $f \not \equiv g$ and $P(f) \cdot P(g) \not \equiv 1$.

We recall the following results from Li and $\mathrm{Li}[7]$.
Theorem H ([7]). Let f and g be two nonconstant entire functions. Suppose that f and g share the value $0 C M, P(f)$ and $P(g)$ share the value $1 C M$ and $\delta(0 ; f)>\frac{1}{2}$. If $\rho(f) \neq 1$, then $f \equiv g$ unless $P(f) \cdot P(g) \equiv 1$.
Theorem I ([7]). Let f and g be two nonconstant entire functions. Suppose that f and g share the value $0 C M, P(f)$ and $P(g)$ share the value $1 I M$ and $\delta(0 ; f)>\frac{4}{5}$. If $\rho(f) \neq 1$, then $f \equiv g$ unless $P(f) \cdot P(g) \equiv 1$.

We can easily note that in Example 1.1, $P(f) \equiv 0$ and $P(g) \equiv 0$. On the other hand, in the following example we see that if $P(f)$ and $P(g)$ are nonconstant, then for an entire function of order 1 the conclusion of Theorem H may hold.

Example 1.2. Let $f=e^{z}$ and $g=e^{-z}$ and $P(h)=h^{(3)}-h^{(2)}-h^{(1)}$. Then f and g share the value $0 \mathrm{CM}, P(f)=-e^{z}$ and $P(g)=-e^{-z}$ share the value 1 CM and $\delta(0 ; f)=1$. Also $P(f) \cdot P(g) \equiv 1$.

In the present paper we extend the results of Li and $\mathrm{Li}[7]$ by including the class of entire functions of order 1. We also extend some previous results to homogeneous differential polynomials.

Let h be a nonconstant meromorphic function. An expression of the form

$$
\begin{equation*}
P(h)=\sum_{k=1}^{n} a_{k} \prod_{j=0}^{p}\left(h^{(j)}\right)^{l_{k j}} \tag{1.2}
\end{equation*}
$$

where $a_{k} \in S(h)$ for $k=1,2, \ldots, n$ and $l_{k j}$ are nonnegative integers for $k=$ $1,2, \ldots, n ; j=0,1,2, \ldots, p$ and $d=\sum_{j=0}^{p} l_{k j}$ for $k=1,2, \ldots, n$, is called a homogeneous differential polynomial of degree d generated by h. Also we denote by Q the quantity $Q=\max _{1 \leq k \leq n} \sum_{j=0}^{p} j l_{k j}$.

Let f and g be two nonconstant meromorphic functions. When we consider $P(f)$ and $P(g)$, as defined by (1.2), and generated by f and g respectively, then we understand that the coefficients $a_{k}(k=1,2, \ldots, n)$ belong to $S(f) \cap S(g)$.

We now state the results of the paper.
Theorem 1.1. Let f and g be two nonconstant meromorphic functions and $a=a(z) \in S(f) \cap S(g)$ and $a \not \equiv 0, \infty$. Suppose that $P(f)$ and $P(g)$, as defined by (1.2), are nonconstant. If $P(f)$ and $P(g)$ share $a=a(z)$ IM and
$\min \left\{5 \delta(0 ; f)+\frac{4 Q+7}{d} \Theta(\infty ; f), 5 \delta(0 ; g)+\frac{4 Q+7}{d} \Theta(\infty ; g)\right\}>\frac{4 Q+4 d+7}{d}$,
then either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv a^{2}$.
Remark 1. If $P(f)$ and $P(g)$ share $a=a(z) \mathrm{CM}$, then the condition (1.3) of Theorem 1.1 can be replaced by the following

$$
\min \left\{2 \delta(0 ; f)+\frac{Q+4}{d} \Theta(\infty ; f), 2 \delta(0 ; g)+\frac{Q+4}{d} \Theta(\infty ; g)\right\}>\frac{Q+d+4}{d} .
$$

Theorem 1.2. Let f and g be two nonconstant meromorphic functions and $a=a(z)(\not \equiv 0, \infty) \in S(f) \cap S(g)$. Suppose that $P(f)$ and $P(g)$, as defined by (1.2), are nonconstant. If f and g share the values $0 C M$ and $\infty I M$ and $P(f)$, $P(g)$ share $a=a(z)$ IM and

$$
5 \delta(0 ; f)+\frac{4 Q+7}{d} \Theta(\infty ; f)>\frac{4 Q+4 d+7}{d}
$$

then either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv a^{2}$.
Theorem 1.3. Let f and g be two nonconstant entire functions and $a=$ $a(z)(\not \equiv 0, \infty) \in S(f) \cap S(g)$. Suppose that $P(f)$ and $P(g)$, as defined by (1.2), are nonconstant. If f and g share the value $0 C M$ and $P(f), P(g)$ share $a=a(z) C M$ and $\delta(0 ; f)>\frac{1}{2}$, then either $P(f) \equiv P(g)$ or $P(f) \cdot P(g) \equiv a^{2}$.

Remark 2. If $P(f)$ and $P(g)$ share $a=a(z) \mathrm{IM}$, then the condition $\delta(0 ; f)>\frac{1}{2}$ of Theorem 1.3 has to be replaced by $\delta(0 ; f)>\frac{4}{5}$.

As the consequences of the main results we obtain the following corollaries.

Corollary 1.1. Let f and g be two nonconstant meromorphic functions. Suppose that $\alpha\left(f^{(k)}\right)^{n}$ and $\alpha\left(g^{(k)}\right)^{n}$ are nonconstant and share the value 1 IM, where $\alpha(\neq 0)$ is a constant and k, n are positive integers. If

$$
\min \left\{5 \delta(0 ; f)+\frac{4 k n+7}{n} \Theta(\infty ; f), 5 \delta(0 ; g)+\frac{4 k n+7}{n} \Theta(\infty ; g)\right\}>\frac{4 k n+4 n+7}{n}
$$

then either $\alpha^{2}\left(f^{(k)} g^{(k)}\right)^{n} \equiv 1$ or $f \equiv \omega g$, where $\omega^{n}=1$.
If, in addition, $f\left(z_{0}\right)=g\left(z_{0}\right) \neq 0$ for some $z_{0} \in \mathbb{C}$, then $\omega=1$.
Corollary 1.2. Let f and g be two nonconstant entire functions such that $P(f)$ and $P(g)$, as defined by (1.1), are nonconstant. Suppose that f and g share the value $0 C M$ and $P(f), P(g)$ share the value $1 C M$. If $\delta(0 ; f)>\frac{1}{2}$, then either $f \equiv g$ or $P(f) \cdot P(g) \equiv 1$ under any one of the following hypotheses:
(i) $\rho(f) \neq 1$,
(ii) $\rho(f)=1$ and
(a) f has at most a finite number of zeros, or
(b) f has infinitely many zeros and f is of minimal type.

We now recall some well known notations of the value distribution theory. Let F and G be two nonconstant meromorphic functions, which share the value 1 IM . We denote by $\bar{N}_{L}(r, 1 ; F)$ the reduced counting function of those zeros of $F-1$ in $\{z:|z|<r\}$, which have larger multiplicities than those of the corresponding zeros of $G-1$. Also we denote by $N_{E}^{1)}(r, 1 ; F)$ the reduced counting function of common simple zeros of $F-1$ and $G-1$ in $\{z:|z|<1\}$, and denote by $\bar{N}_{E}^{(2}(r, 1 ; F)$ the counting function of those common multiple zeros of $F-1$ and $G-1$ in $\{z:|z|<r\}$, where each such common multiple zero of $F-1$ and $G-1$ has the same multiplicity related to $F-1$ and $G-1$. Likewise we define $\bar{N}_{L}(r, 1 ; G), N_{E}^{1)}(r, 1 ; G)$ and $\bar{N}_{E}^{(2}(r, 1 ; G)$.

Also we denote by $N_{1)}(r, 0 ; F)$ the counting function of simple zeros of F and by $\bar{N}_{(2}(r, 0 ; F)$ the reduced counting function of multiple zeros of F in $\{z:|z|<r\}$.

2. Lemmas

In this section we present some necessary lemmas.
Lemma 2.1. Let f be a nonconstant meromorphic function and $P(f)$ be defined by (1.2). Then

$$
T(r, P) \leq d T(r, f)+Q \bar{N}(r, \infty ; f)+S(r, f)
$$

and

$$
\begin{aligned}
N(r, 0 ; P) & \leq T(r, P)-d T(r, f)+d N(r, 0 ; f)+S(r, f) \\
& \leq Q \bar{N}(r, \infty ; f)+d N(r, 0 ; f)+S(r, f)
\end{aligned}
$$

Proof. Since

$$
\begin{aligned}
N(r, P) & \leq d N(r, f)+Q \bar{N}(r, \infty ; f)+S(r, f) \text { and } \\
m(r, f) & \leq m\left(r, \frac{P}{f^{d}}\right)+m\left(r, f^{d}\right)=d m(r, f)+S(r, f)
\end{aligned}
$$

we get

$$
\begin{equation*}
T(r, P) \leq d T(r, f)+Q \bar{N}(r, \infty ; f)+S(r, f) \tag{2.1}
\end{equation*}
$$

Now

$$
m\left(r, 0 ; f^{d}\right) \leq m(r, 0 ; P)+m\left(r, \frac{P}{f^{d}}\right)=m(r, 0 ; P)+S(r, f)
$$

and so

$$
T\left(r, f^{d}\right)-N\left(r, 0 ; f^{d}\right) \leq T(r, P)-N(r, 0 ; P)+S(r, f)
$$

i.e.,

$$
\begin{equation*}
N(r, 0 ; P) \leq T(r, P)-d T(r, f)+d N(r, 0 ; f)+S(r, f) \tag{2.2}
\end{equation*}
$$

The lemma follows from (2.1) and (2.2).
Lemma 2.2 ([16]). Let F and G be two nonconstant meromorphic functions such that F and G share 1 IM. Then

$$
\begin{aligned}
T(r, F) \leq & \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+N_{E}^{1)}(r, 1 ; F) \\
& +\bar{N}_{L}(r, 1 ; F)-N_{0}\left(r, \infty ; F^{(1)}\right)-N_{0}\left(r, 0 ; G^{(1)}\right)+S(r, F)+S(r, G)
\end{aligned}
$$

where $N_{0}\left(r, 0 ; F^{(1)}\right)$ denotes the counting function corresponding to the zeros of $F^{(1)}$ that are not zeros of F and $F-1, N_{0}\left(r, 0 ; G^{(1)}\right)$ denotes the counting function corresponding to the zeros of $G^{(1)}$ that are not zeros of G and $G-1$.

Lemma 2.3 ([2, p. 47]). Let f be a nonconstant meromorphic function and a_{1}, a_{2}, a_{3} be three distinct members of $S(f)$. Then

$$
T(r, f) \leq \bar{N}\left(r, 0 ; f-a_{1}\right)+\bar{N}\left(r, 0 ; f-a_{2}\right)+\bar{N}\left(r, 0 ; f-a_{3}\right)+S(r, f) .
$$

Lemma 2.4 ([3]). Let f be a transcendental meromorphic function and $P(f)$, defined by (1.2), be nonconstant and $d \geq 1$. Then
$d T(r, f) \leq \bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; P(f))+d N(r, 0 ; f)-N_{0}\left(r, 0 ;(P(f))^{(1)}\right)+S(r, f)$, where $N_{0}\left(r, 0 ;(P(f))^{(1)}\right)$ denotes the counting function corresponding to the zeros of $(P(f))^{(1)}$ which are not the zeros of $P(f)$ and $P(f)-1$.

Remark 3. In fact Lemma 2.4 is a special case of Lemma 1 [3].
Lemma 2.5 ([12, p. 92]). Suppose that $f_{1}, f_{2}, \ldots, f_{n}(n \geq 3)$ are meromorphic functions which are not constants except for f_{n}. Furthermore, let $\sum_{j=1}^{n} f_{j} \equiv 1$. If $f_{n} \not \equiv 0$ and

$$
\sum_{j=1}^{n} N\left(r, 0 ; f_{j}\right)+(n-1) \sum_{j=1}^{n} \bar{N}\left(r, \infty ; f_{j}\right)<\{\lambda+o(1)\} T\left(r, f_{k}\right),
$$

where $r \in I$, a set of infinite linear measure, $k=1,2, \ldots, n-1$ and $0<\lambda<1$, then $f_{n} \equiv 1$.

3. Proof of theorems and corollaries

Proof of Theorem 1.1. Let $F=\frac{P(f)}{a}$ and $G=\frac{P(g)}{a}$. Then F and G share 1 IM and so by Lemma 2.2 we get

$$
T(r, F) \leq \bar{N}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}(r, 0 ; G)+\bar{N}(r, \infty ; G)+N_{E}^{1)}(r, 1 ; F)
$$

$$
\text { (3.1) } \quad+\bar{N}_{L}(r, 1 ; F)-N_{0}\left(r, 0 ; F^{(1)}\right)-N_{0}\left(r, 0 ; G^{(1)}\right)+S(r, F)+S(r, G)
$$

Let

$$
H=\left(\frac{F^{(2)}}{F^{(1)}}-\frac{2 F^{(1)}}{F-1}\right)-\left(\frac{G^{(2)}}{G^{(1)}}-\frac{2 G^{(1)}}{G-1}\right)
$$

We suppose that $H \not \equiv 0$. Then by a simple calculation we see that

$$
\begin{align*}
N_{E}^{1)}(r, 1 ; F) & \leq N(r, 0 ; H) \\
& \leq T(r, H) \\
& \leq N(r, \infty ; H)+S(r, F)+S(r, G) \tag{3.2}
\end{align*}
$$

and

$$
\begin{align*}
N(r, \infty ; H) \leq & \bar{N}_{(2}(r, 0 ; F)+\bar{N}(r, \infty ; F)+\bar{N}_{(2}(r, 0 ; G)+\bar{N}(r, \infty ; G) \\
& +\bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+N_{0}\left(r, 0 ; F^{(1)}\right)+N_{0}\left(r, 0 ; G^{(1)}\right) \tag{3.3}
\end{align*}
$$

Noting that $\bar{N}(r, 0 ; F)+\bar{N}_{(2}(r, 0 ; F) \leq N(r, 0 ; F)$ and combining (3.1), (3.2) and (3.3) we get

$$
\begin{align*}
T(r, F) \leq & N(r, 0 ; F)+2 \bar{N}(r, \infty ; F)+N(r, 0 ; G)+2 \bar{N}(r, \infty ; G) \\
& +2 \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+S(r, F)+S(r, G) \tag{3.4}
\end{align*}
$$

Now by Lemma 2.1 and (3.4) we get

$$
\begin{aligned}
N(r, 0 ; F) \leq & T(r, F)-d T(r, F)+d N(r, 0 ; f)+S(r, f) \\
\leq & N(r, 0 ; F)+2 \bar{N}(r, \infty ; F)+Q \bar{N}(r, \infty ; g)+d N(r, 0 ; g) \\
& +2 \bar{N}(r, \infty ; g)+2 \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)-d T(r, f) \\
& +d N(r, 0 ; f)+S(r, f)+S(r, g)
\end{aligned}
$$

and so

$$
\begin{align*}
d T(r, f) \leq & d N(r, 0 ; f)+2 \bar{N}(r, \infty ; f)+d N(r, 0 ; g)+(Q+2) \bar{N}(r, \infty ; g) \\
& +2 \bar{N}_{L}(r, 1 ; F)+\bar{N}_{L}(r, 1 ; G)+S(r, f)+S(r, g) \tag{3.5}
\end{align*}
$$

Again using Lemma 2.1 we obtain

$$
\begin{aligned}
\bar{N}_{L}(r, 1 ; F) & \leq N(r, 1 ; F)-\bar{N}(r, 1 ; F) \\
& \leq N\left(r, 0 ; F^{(1)}\right) \\
& \leq N(r, 0 ; F)+\bar{N}(r, \infty ; F)+S(r, F)
\end{aligned}
$$

$$
\begin{equation*}
\leq d N(r, 0 ; f)+(Q+1) \bar{N}(r, \infty ; f)+S(r, f) \tag{3.6}
\end{equation*}
$$

Similarly

$$
\begin{equation*}
\bar{N}_{L}(r, 1 ; G) \leq d N(r, 0 ; g)+(Q+1) \bar{N}(r, \infty ; g)+S(r, g) \tag{3.7}
\end{equation*}
$$

Combining (3.5), (3.6) and (3.7) we obtain

$$
\begin{align*}
T(r, f) \leq & 3 N(r, 0 ; f)+\frac{2 Q+4}{d} \bar{N}(r, \infty ; f)+2 N(r, 0 ; g) \\
& +\frac{2 Q+3}{d} \bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \tag{3.8}
\end{align*}
$$

Likewise we have

$$
\begin{align*}
T(r, g) \leq & 3 N(r, 0 ; g)+\frac{2 Q+4}{d} \bar{N}(r, \infty ; g)+2 N(r, 0 ; f) \\
& +\frac{2 Q+3}{d} \bar{N}(r, \infty ; f)+S(r, f)+S(r, g) \tag{3.9}
\end{align*}
$$

Adding (3.8) and (3.9) we obtain

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & 5 N(r, 0 ; f)+\frac{4 Q+7}{d} \bar{N}(r, \infty ; f)+5 N(r, 0 ; g) \\
& +\frac{4 Q+7}{d} \bar{N}(r, \infty ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

which implies a contradiction to the hypothesis. Therefore $H \equiv 0$ and so on integration we get

$$
\frac{1}{G-1}=\frac{A}{F-1}+B
$$

where $A(\neq 0)$ and B are constants. This gives

$$
\begin{equation*}
G=\frac{(B+1) F+(A-B-1)}{B F+A-B} \tag{3.10}
\end{equation*}
$$

and

$$
\begin{equation*}
F=\frac{(B-A) G+(A-B-1)}{B G-(B+1)} \tag{3.11}
\end{equation*}
$$

We now consider the following three cases.
Case 1: Let $B \neq 0,-1$. From (3.11) we have $\bar{N}\left(r, \frac{B+1}{B} ; G\right)=\bar{N}(r, \infty ; F)$.
Now by the second fundamental theorem and Lemma 2.2 we get

$$
\begin{aligned}
T(r, G) & \leq N(r, 0 ; G)+\bar{N}\left(r, \frac{B+1}{B} ; G\right)+\bar{N}(r, \infty ; G)+S(r, G) \\
& \leq T(r, G)-d T(r, g)+d N(r, 0 ; g)+\bar{N}(r, \infty ; F)+\bar{N}(r, \infty ; G)+S(r, g)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
d T(r, g) \leq d N(r, 0 ; g)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)+S(r, g) \tag{3.12}
\end{equation*}
$$

If $A-B-1 \neq 0$, from (3.10) we have $N\left(r, \frac{B+1-A}{B+1} ; F\right)=N(r, 0 ; G)$. Hence by the second fundamental theorem and Lemma 2.2 we get

$$
\begin{aligned}
T(r, F) & \leq N(r, 0 ; F)+\bar{N}\left(r, \frac{B+1-A}{B+1} ; F\right)+\bar{N}(r, \infty ; F)+S(r, F) \\
& \leq T(r, F)-d T(r, f)+d N(r, 0 ; f)+N(r, 0 ; G)+\bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

i.e.,

$$
\begin{align*}
d T(r, f) \leq & d N(r, 0 ; f)+d N(r, 0 ; g)+\bar{N}(r, \infty ; f) \\
& +Q \bar{N}(r, \infty ; g)+S(r, f)+S(r, g) \tag{3.13}
\end{align*}
$$

Combining (3.12) and (3.13) we obtain

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & N(r, 0 ; f)+\frac{2}{d} \bar{N}(r, \infty ; f)+2 N(r, 0 ; g) \\
& \frac{Q+1}{d} \bar{N}(r, \infty ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

a contradiction.
Hence $A-B-1=0$ and from (3.10) we get

$$
G=\frac{(B+1) F}{B F+1}
$$

Therefore $\bar{N}\left(r, 0 ; F+\frac{1}{B}\right)=\bar{N}(r, \infty ; G)$. Again by the second fundamental theorem and Lemma 2.2 we obtain

$$
\begin{aligned}
T(r, F) & \leq N(r, 0 ; F)+\bar{N}\left(r, 0 ; F+\frac{1}{B}\right)+\bar{N}(r, \infty ; F)+S(r, F) \\
& \leq T(r, F)-d T(r, f)+d N(r, 0 ; f)+\bar{N}(r, \infty ; g)+\bar{N}(r, \infty ; f)+S(r, f)
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
d T(r, f) \leq d N(r, 0 ; f)+\bar{N}(r, \infty ; f)+\bar{N}(r, \infty ; g)+S(r, f) \tag{3.14}
\end{equation*}
$$

Combining (3.12) and (3.14) we have

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & N(r, 0 ; f)+N(r, 0 ; g)+\frac{2}{d} \bar{N}(r, \infty ; f) \\
& +\frac{2}{d} \bar{N}(r, \infty ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

a contradiction.
Case 2: We suppose that $B=0$. From (3.10) and (3.11) we have

$$
G=\frac{F+A-1}{A} \quad \text { and } \quad F=A G+1-A
$$

If $A-1 \neq 0$, then it follows that

$$
N(r, 1-A ; F)=N(r, 0 ; G) \quad \text { and } \quad N\left(r, \frac{A-1}{A} ; G\right)=N(r, 0 ; F)
$$

Using the similar argument of Case 1 we arrive at a contradiction. Therefore $A-1=0$ and so $P(f) \equiv P(g)$.

Case 3: We suppose that $B=-1$. From (3.10) and (3.11) we get

$$
G=\frac{A}{A+1-F} \quad \text { and } \quad F=\frac{(A+1) G-A}{G}
$$

If $A+1 \neq 0$, we obtain

$$
\bar{N}(r, A+1 ; F)=\bar{N}(r, \infty ; G) \quad \text { and } \quad N\left(r, \frac{A}{A+1} ; G\right)=N(r, 0 ; F)
$$

Using the similar argument of Case 1 we arrive at a contradiction. Therefore $A+1=0$ and so $P(f) P(g) \equiv a^{2}$. This proves the theorem.

Proof of Theorem 1.2. Let $F=\frac{P(f)}{a}$ and $G=\frac{P(g)}{a}$. Then F and G share 1 IM and so by Lemma 2.2 and Lemma 2.5 we get

$$
\begin{align*}
d T(r, f) & \leq \bar{N}(r, \infty ; f)+\bar{N}(r, 1 ; F)+d N(r, 0 ; f)+S(r, f) \\
& =\bar{N}(r, \infty ; g)+\bar{N}(r, 1 ; G)+d N(r, 0 ; g)+S(r, f) \\
& \leq(1+2 d+Q) T(r, g)+S(r, f)+S(r, g) \tag{3.15}
\end{align*}
$$

Similarly

$$
\begin{equation*}
d T(r, g) \leq(1+2 d+Q) T(r, f)+S(r, f)+S(r, g) \tag{3.16}
\end{equation*}
$$

From (3.15) and (3.16) we get $S(r, f)=S(r, g)$. The rest of the proof is similar to that of Theorem 1.1. This proves the theorem.
Proof of Corollary 1.1. By Theorem 1.1 we get either $\alpha^{2}\left(f^{(k)} g^{(k)}\right)^{n} \equiv 1$ or $\left(f^{(k)}\right)^{n} \equiv\left(g^{(k)}\right)^{n}$. We suppose that $\left(f^{(k)}\right)^{n} \equiv\left(g^{(k)}\right)^{n}$. Then $f^{(k)}=\omega g^{(k)}$, where ω is a constant satisfying $\omega^{n}=1$. Integrating k times we obtain $f=$ $\omega g+p$, where p is a polynomial of degree at most $k-1$. From the hypothesis it is clear that f and g are transcendental meromorphic functions. If $p \not \equiv 0$, by Lemma 2.3 we get

$$
\begin{align*}
T(r, f) & \leq N(r, 0 ; f)+N(r, 0 ; f-p)+\bar{N}(r, \infty ; f)+S(r, f) \\
& =N(r, 0 ; f)+N(r, 0 ; g)+\bar{N}(r, \infty ; f)+S(r, f) \tag{3.17}
\end{align*}
$$

and

$$
\begin{align*}
T(r, g) & \leq N(r, 0 ; g)+N\left(r, 0 ; g+\frac{p}{\omega}\right)+\bar{N}(r, \infty ; g)+S(r, g) \\
& =N(r, 0 ; g)+N(r, 0 ; f)+\bar{N}(r, \infty ; g)+S(r, g) \tag{3.18}
\end{align*}
$$

Combining (3.17) and (3.18) we obtain

$$
\begin{aligned}
T(r, f)+T(r, g) \leq & 2 N(r, 0 ; f)+2 N(r, 0 ; g)+\bar{N}(r, \infty ; f) \\
& +\bar{N}(r, \infty ; g)+S(r, f)+S(r, g)
\end{aligned}
$$

which contradicts the hypothesis. Therefore $p \equiv 0$ and so $f \equiv \omega g$.
If, further, $f\left(z_{0}\right)=g\left(z_{0}\right) \neq 0$ for some $z_{0} \in \mathbb{C}$, then clearly $\omega=1$ and so $f \equiv g$. This proves the corollary.

Proof of Corollary 1.2. By Theorem 1.3 we get either $P(f) \equiv P(g)$ or $P(f)$. $P(g) \equiv 1$. Let $P(f) \equiv P(g)$ so that $P(g-f) \equiv 0$. Then

$$
\begin{equation*}
g-f=\sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z} \tag{3.19}
\end{equation*}
$$

where $m(\leq k)$ is a positive integer, α_{j} 's are distinct complex constants and $p_{j}(z)$'s are nonzero polynomials.

Since f and g share 0 CM , we can put $g=f \cdot e^{h}$, where h is an entire function.

Let $e^{h} \not \equiv 1$, otherwise we are done. So from (3.19) we get

$$
f=\frac{\sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z}}{e^{h}-1}
$$

Since f is entire, we see that $N\left(r, 0 ; e^{h}-1\right) \leq N\left(r, 0 ; \sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z}\right)$ and by the second fundamental theorem we get

$$
\begin{align*}
T\left(r, e^{h}\right) & \leq \bar{N}\left(r, \infty ; e^{h}\right)+\bar{N}\left(r, 0 ; e^{h}\right)+\bar{N}\left(r, 0 ; e^{h}-1\right)+S\left(r, e^{h}\right) \\
& \leq N\left(r, 0 ; \sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z}\right)+S\left(r, e^{h}\right) \\
& \leq T\left(r, \sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z}\right)+S\left(r, e^{h}\right) \\
& \leq \sum_{j=1}^{m}\left\{T\left(r, p_{j}(z)\right)+T\left(r, e^{\alpha_{j} z}\right)\right\}+S\left(r, e^{h}\right) \\
& =O(\log r)+O(r)+S\left(r, e^{h}\right) \tag{3.20}
\end{align*}
$$

If h is transcendental or a polynomial of degree at least 2, then from (3.20) we see that $T\left(r, e^{h}\right)=S\left(r, e^{h}\right)$, contradiction. Hence h is a polynomial of degree at most 1.

First we assume that h is a constant. Then $P(f) \equiv P(g) \equiv e^{h} P(f)$ and so $e^{h} \equiv 1$, which contradicts our assumption.

Next we assume that $h(z)=a z+b$, where $a(\neq 0)$ and b are constants. Then

$$
f=\frac{\sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z}}{e^{a z+b}-1} \quad \text { and so } \quad \rho(f) \leq 1
$$

We now consider the following cases.
Case 1: Let $\rho(f)<1$.
Then by Milloux basic result [2, Theorem 3.2, p. 57] we get

$$
\begin{aligned}
T(r, f) & \leq N(r, 0 ; f)+\bar{N}(r, 1 ; P(f))+S(r, f) \\
& =N(r, 0 ; g)+\bar{N}(r, 1 ; P(g))+S(r, f) \\
& \leq T(r, g)+T(r, P(g))+S(r, f)
\end{aligned}
$$

$$
\begin{align*}
& =T(r, g)+m(r, P(g))+S(r, f) \\
& \leq T(r, g)+m(r, g)+m\left(r, \frac{P(g)}{g}\right)+S(r, f) \\
& =2 T(r, g)+S(r, g)+S(r, f) \tag{3.21}
\end{align*}
$$

$$
\begin{equation*}
T(r, g) \leq 2 T(r, f)+S(r, f)+S(r, g) \tag{3.22}
\end{equation*}
$$

Since f and so g is of finite order, from (3.21) and (3.22) we see that $\rho(f)=$ $\rho(g)$. Therefore

$$
\rho\left(e^{a z+b}\right)=\rho\left(\frac{g}{f}\right) \leq \max \{\rho(f), \rho(g)\}<1
$$

which is impossible as $a \neq 0$.
Case 2: Let $\rho(f)=1$.
We now consider the following subcases.
Subcase 2.1: Let f have at most a finite number of zeros.
We put $f(z)=q(z) e^{c z+d}$, where $q(z)$ is a polynomial. Then

$$
g(z)=q(z) e^{(a+c) z+(b+d)}
$$

and so $P(f) \equiv P(g)$ implies

$$
q_{1}(z) e^{c z+d}=q_{2}(z) e^{(a+c) z+(b+d)}
$$

where q_{1}, q_{2} are polynomials. This implies $q_{2}(z) e^{a z+b}=q_{1}(z)$, which is impossible as $a \neq 0$.

Subcase 2.2: Let f have infinitely many zeros and f be of minimal type.
We put

$$
H_{j}(z)=-\frac{p_{j}(z) e^{\alpha_{j} z}}{f} \text { for } 1 \leq j \leq m, \text { and } H_{m+1}(z)=e^{a z+b} .
$$

Then $f=\frac{\sum_{j=1}^{m} p_{j}(z) e^{\alpha_{j} z}}{e^{a z+b}-1}$ implies

$$
\begin{equation*}
\sum_{j=1}^{m+1} H_{j}(z) \equiv 1 \tag{3.23}
\end{equation*}
$$

Let one of α_{j} 's, say α_{1} be zero. Then $H_{1} \not \equiv 0$ and we rewrite (3.23) as

$$
\sum_{j=2}^{m+1} H_{j}(z)+H_{1}(z) \equiv 1
$$

Now

$$
\begin{align*}
\sum_{j=1}^{m+1} N\left(r, 0 ; H_{j}\right)+m \sum_{j=1}^{m+1} \bar{N}\left(r, \infty ; H_{j}\right) & =\sum_{j=1}^{m+1} N\left(r, 0 ; p_{j}\right)+m^{2} \bar{N}(r, 0 ; f) \\
& =O(\log r)+m^{2} \bar{N}(r, 0 ; f) \tag{3.24}
\end{align*}
$$

Since $e^{\alpha_{j} z}=-\frac{H_{j}(z)}{p_{j}(z)} f$, we get

$$
T\left(r, e^{\alpha_{j} z}\right) \leq T\left(r, H_{j}\right)+T(r, f)+O(\log r)
$$

This implies

$$
\frac{\left|\alpha_{j}\right|}{\pi} \leq \frac{T\left(r, H_{j}\right)}{r}+\frac{T(r, f)}{r}+o(1)
$$

and so

$$
\liminf _{r \rightarrow \infty} \frac{T\left(r, H_{j}\right)}{r}+\limsup _{r \rightarrow \infty} \frac{T(r, f)}{r} \geq \frac{\left|\alpha_{j}\right|}{\pi} .
$$

Since f is of minimal type, we get

$$
\liminf _{r \rightarrow \infty} \frac{T\left(r, H_{j}\right)}{r} \geq K \text { for } j=2,3, \ldots, m
$$

where $K=\min _{2 \leq j \leq m} \frac{\left|\alpha_{j}\right|}{\pi}>0$.
Hence for $j=1,2, \ldots, m$ we get

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 0 ; f)}{T\left(r, H_{j}\right)} \leq \limsup _{r \rightarrow \infty} \frac{T(r, f)}{r} \cdot \limsup _{r \rightarrow \infty} \frac{r}{T\left(r, H_{j}\right)}=0 .
$$

Also

$$
\limsup _{r \rightarrow \infty} \frac{\bar{N}(r, 0 ; f)}{T\left(r, H_{m+1}\right)} \leq \frac{\pi}{|a|} \limsup _{r \rightarrow \infty} \frac{T(r, f)}{r}=0
$$

So from (3.24) we see that

$$
\sum_{j=1}^{m+1} N\left(r, 0 ; H_{j}\right)+m \sum_{j=1}^{m+1} \bar{N}\left(r, \infty ; H_{j}\right)<\{\lambda+o(1)\} T\left(r, H_{k}\right)
$$

for $k=2,3, \ldots, m+1$, where $\lambda(0<\lambda<1)$ is a suitable constant.
Therefore by Lemma 2.5 we get $H_{1}(z) \equiv 1$, which is impossible as $\rho(f)=1$.
So, $\alpha_{j} \neq 0$ for $j=1,2, \ldots, m$. Now adopting the same technique as above we get $H_{m+1}(z) \equiv 1$, which contradicts our assumption that $e^{h} \not \equiv 1$. This proves the corollary.

Remark 4. It is an interesting open problem to examine the validity of corollary 1.2 for entire functions f and g where f is of unit order with nonminimal type and f has infinitely many zeros.

Acknowledgement. The authors are thankful to the referee for valuable suggestions towards the improvement of the exposition of the paper.

References

[1] A. Chen, X. Wang, and G. Zhang, Unicity of meromorphic function sharing one small function with its derivative, Int. J. Math. Math. Sci. 2010 (2010), Article Id 507454, 11 pages.
[2] W. K. Hayman, Meromorphic Functions, The Clarendon Press, Oxford, 1964.
[3] J. D. Hinchliffe, On a result of Chuang related to Hayman's alternative, Comput. Methods Funct. Theory 2 (2002), no. 1, 293-297.
[4] X. H. Hua, A unicity theorem for entire functions, Bull. London Math. Soc. 22 (1990), no. 5, 457-462.
[5] I. Lahiri, Uniqueness of meromorphic functions as governed by their differential polynomials, Yokohama Math. J. 44 (1997), no. 2, 147-156.
[6] , Differential polynomials and uniqueness of meromorphic functions, Yokohama Math. J. 45 (1998), no. 1, 31-38.
[7] J. T. Li and P. Li, Uniqueness of entire functions concerning differential polynomials, Commun. Korean Math. Soc. 30 (2015), no. 2, 93-101.
[8] E. Mues and M. Reinders, On a question of C. C. Yang, Complex Var. Theory Appl. 34 (1997), no. 1-2, 171-179.
[9] K. Shibazaki, Unicity theorems for entire functions of finite order, Mem. Nat, Defence Acad. (Japan) 21 (1981), no. 3, 67-71.
[10] C. C. Yang, On two entire functions which together with their first derivatives have the same zeros, J. Math. Anal. Appl. 56 (1976), no. 1, 1-6.
[11] C. C. Yang and H. X. Yi, A unicity theorem for meromorphic functions with deficient value, Acta Math. Sinica 37 (1994), no. 1, 62-72.
[12] _ Uniqueness Theory of Meromorphic Functions, Science Press, Beijing and Kluwer Academic Publishers, New York, 2003.
[13] H. X. Yi, Uniqueness of meromorphic functions and a question of C. C. Yang, Complex Var. Theory Appl. 14 (1990), no. 1-4, 169-176.
[14] , A question of C. C. Yang on the uniqueness of entire functions, Kodai Math. J. 13 (1990), no. 1, 39-46.
[15] , Unicity theorems for entire or meromorphic functions, Acta Math. Sin. (N.S.) 10 (1994), no. 2, 121-131.
[16] _, Uniqueness theorems for meromorphic functions whose nth derivatives share the same 1-points, Complex Var. Theory Appl. 34 (1997), no. 4, 421-436.
[17] H. X. Yi and C. C. Yang, A uniqueness theorem for meromorphic functions whose nth derivatives share the same 1-points, J. Anal. Math. 62 (1994), 261-270.

Indrajit Lahiri
Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail address: ilahiri@hotmail.com
Bipul Pal
Department of Mathematics
University of Kalyani
West Bengal 741235, India
E-mail address: palbipul86@gmail.com

