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UNIQUENESS OF MEROMORPHIC FUNCTIONS WITH
THEIR HOMOGENEOUS AND LINEAR DIFFERENTIAL
POLYNOMIALS SHARING A SMALL FUNCTION

INDRAJIT LAHIRI AND BIrPUL PAL”

ABSTRACT. In this paper we study the uniqueness question of meromor-
phic functions whose certain differential polynomials share a small func-
tion.

1. Introduction, definitions and results

Let f be a meromorphic function in the open complex plane C. We use the
standard notations of Nevanlinna’s value distribution theory such as m(r, f),
N(r, f), N(r,f), T(r,f) etc. as available in [2]. We denote by S(r, f) any
quantity satisfying S(r, f) = o{T(r, f)} as r — oo possibly outside a set of
finite linear measure.

A meromorphic function a = a(z) is called a small function of f if T'(r,a) =
S(r, ). We denote by S(f) the collection of all small functions of f. Clearly
C c S(f).

Let f and g be two meromorphic functions in C and a € S(f)NS(g). We say
that f and g share the function a = a(z) CM (counting multiplicities) or IM
(ignoring multiplicities) if f — a and g — a have the same set of zeros counting
multiplicities or ignoring multiplicities respectively.

For a € CN {0} the quantities

A : N(r,a; f) o . N(r,a;f)
0a; f)=1 hglj)lip 0 ) and O(a; f) =1 hglj)lip 0 )
are respectively called the deficiency and ramification index of a for the function
f, where N(r,a; f) = N(T,ﬁ), N(Taa;f) :N(Tvﬁ)v N(r,o0; f) = N(r, [f)
and N (r,00; f) = N(r, f).
log T'(r,f)

Also p(f) = limsup, _, . 5LCI and 7(f) = limsup, .o 2L (0 < p(f) <
o0) are respectively called the order and type of f. A meromorphic function f
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is said to be of minimal type if 7(f) = 0, which can be found, for example, in
[2, pp. 16-17].

In 1976 Yang [10] asked to investigate the relationship between two noncon-
stant entire functions f and g if f and ¢ share the value 0 CM and () and
gV share the value 1 CM. Many authors, including Shibazaki [9], Yi [13, 14],
Yang and Yi [11], Hua [4], Mues and Reinders [8], Lahiri [5, 6], studied the
question. Further, Yi [16], Chen, Wang and Zhang [1], Li and Li [7] and others
also worked on this question and its extensions.

In 1990 Yi [13] proved the following result.

Theorem A ([13]). Let f and g be two nonconstant entire functions such that
f. g share the value 0 CM and f™, g™ share the value 1 CM. If 5(0; f) > 3,
then either f =g or f(™ . g™ =1,

Shibazaki [9] did not consider the sharing of zeros and proved the following
theorem.

Theorem B ([9]). Let f and g be two nonconstant entire functions of finite
order such that f1), g share the value 1 CM. If §(0; f) > 0 and 0 is a Picard
exceptional value of g, then either f =g or fV . ¢ =1.

Yi and Yang [17], Hua [4] and many others improved Theorem B in different
manners. Yi and Yang [17] proved the following result.

Theorem C ([17]). Let f and g be two nonconstant meromorphic functions
such that f™ and g share the value 1 CM. If ©(oc0; f) = O(00;9) = 1 and
5(0; f) +6(0; g) > 1, then either f =g or f0 . g™ =1.

Also Yi [16] proved the following improvement of Theorem B.

Theorem D ([16]). Let f and g be two nonconstant meromorphic functions
such that f™ and ¢\™) share the values 1 and co CM. If

5(0; f) + (03 9) + (n + 2)8(00; f) > n + 3,
then either f =g or f( . ¢ =1.
In [16] Yi proved some others results which improve previous ones.

Theorem E ([16]). Let f and g be two nonconstant meromorphic functions
such that f™ and g™ share the value 1 CM. If

26(0; f) + (n+4)0(c0; f) >n+5 and
26(0;9) + (n +4)O(o0;9) > n + 5,
then either f =g or f( . ¢ =1.

Theorem F ([16]). Let f and g be two nonconstant meromorphic functions
such that ™ and ¢\ share the value 1 IM. If

58(0; f) + (4n + 7)O(o0; f) > 4n + 11 and
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56(0; 9) + (4n + 7)O(oc0; g) > 4n + 11,
then either f =g or f(™ . g™ =1.

In 1990 Yi [14] considered the uniqueness of entire functions when they share
the value 0 CM and that their derivatives share the value 1 CM. The following
result of H. X. Yi [14] is an answer to the question of C. C. Yang under a
general setting.

Theorem G ([14]). Let f and g be two nonconstant entire functions and let
k be a positive integer. If f and g share the value 0 CM, f*) and ¢¥) share
the value 1 CM and 6(0; f) > %, then either f =g or f*) . gk =1,

Recently Li and Li [7] considered the problem of replacing the derivatives
by linear differential polynomials generated by entire functions.
Let i be a nonconstant meromorphic function. An expression of the form

(1.1) P(h) = h™ +ap 1 h*Y 4. 4 a hM 4 agh,

where ag,a1,...,ar—1 are complex constants and k is a positive integer, is
called a linear differential polynomial generated by h.

Considering following example Li and Li [7] exhibited that it is not possible
to replace f(®) and ¢g*) in Theorem G respectively by P(f) and P(g).

Example 1.1 ([7]). Let f = 1e72* and g = e 22, If P(h) = h® +2h1), then
f, g share the value 0 CM, P(f), P(g) share the value 1 CM and §(0; f) =1
but f # g and P(f) - P(g) # 1.

We recall the following results from Li and Li[7].

Theorem H ([7]). Let f and g be two nonconstant entire functions. Suppose
that f and g share the value 0 CM, P(f) and P(g) share the value 1 CM and

6(0; f) > 3. If p(f) # 1, then f = g unless P(f)- P(g) = 1.

Theorem I ([7]). Let f and g be two nonconstant entire functions. Suppose
that f and g share the value 0 CM, P(f) and P(g) share the value 1 IM and

5(0; f) > %. If p(f) # 1, then f = g unless P(f)- P(g) = 1.

We can easily note that in Example 1.1, P(f) = 0 and P(g) = 0. On
the other hand, in the following example we see that if P(f) and P(g) are
nonconstant, then for an entire function of order 1 the conclusion of Theorem
H may hold.

Example 1.2. Let f = ¢* and g = e~ * and P(h) = h(®) — b — h(D Then f
and g share the value 0 CM, P(f) = —e® and P(g) = —e * share the value 1
CM and §(0; f) = 1. Also P(f)- P(g) = 1.

In the present paper we extend the results of Li and Li [7] by including the
class of entire functions of order 1. We also extend some previous results to
homogeneous differential polynomials.
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Let h be a nonconstant meromorphic function. An expression of the form

n P
(1.2) P(h) = S ar [J (),

k=1 ;=0
where ai, € S(h) for k = 1,2,...,n and l; are nonnegative integers for k =
L2,...,n; j = 0,1,2,...,pand d = YF_;lg; for k = 1,2,...,n, is called

a homogeneous differential polynomial of degree d generated by h. Also we
denote by @ the quantity @ = maxi<g<nd_;_ojlk;-

Let f and g be two nonconstant meromorphic functions. When we consider
P(f) and P(g), as defined by (1.2), and generated by f and g respectively, then
we understand that the coefficients ai (k =1,2,...,n) belong to S(f) N S(g).

We now state the results of the paper.

Theorem 1.1. Let f and g be two nonconstant meromorphic functions and
a=a(z) € S(f)NS(g) and a £ 0,00. Suppose that P(f) and P(g), as defined
by (1.2), are nonconstant. If P(f) and P(g) share a = a(z) IM and

(1.3)

min {55(0;f) + WQ+7

O(o0; f), 56(0;9) +

4 4 4d
LT} » 1T

then either P(f) = P(g) or P(f)- P(g) = a®.

Remark 1. If P(f) and P(g) share a = a(z) CM, then the condition (1.3) of
Theorem 1.1 can be replaced by the following

min {25(0; i+ %@(005 f), 26(0;9) + %9(00;9)} = w

Theorem 1.2. Let f and g be two nonconstant meromorphic functions and
a = a(z)(# 0,00) € S(f) N S(g). Suppose that P(f) and P(g), as defined by
(1.2), are nonconstant. If f and g share the values 0 CM and oo IM and P(f),
P(g) share a = a(z) IM and

L CLE

then either P(f) = P(g) or P(f)- P(g) = a*.

AQ +4d+7

Theorem 1.3. Let [ and g be two monconstant entire functions and a =
a(z)(#£ 0,00) € S(f)NS(g). Suppose that P(f) and P(g), as defined by (1.2),
are nonconstant. If f and g share the value 0 CM and P(f), P(g) share
a=a(z) CM and §(0; f) > &, then either P(f) = P(g) or P(f)- P(g) = a®.

Remark 2. If P(f) and P(g) share a = a(z) IM, then the condition 6(0; f) >
of Theorem 1.3 has to be replaced by 6(0; f) > %.

1
2

As the consequences of the main results we obtain the following corollaries.



UNIQUENESS OF MEROMORPHIC FUNCTIONS 829

Corollary 1.1. Let f and g be two nonconstant meromorphic functions. Sup-
pose that a(f*)" and a(g™)" are nonconstant and share the value 1 IM,
where a(# 0) is a constant and k, n are positive integers. If

4kn+7 4kn+7

Akn+4
O(o0; f), 56(0;9) + nitdntT

@(00;9)} >

n

min {55(0; )+

then either o?(f® g =1 or f = wg, where w™ = 1.
If, in addition, f(z0) = g(z0) # 0 for some zy € C, then w = 1.

Corollary 1.2. Let f and g be two nonconstant entire functions such that
P(f) and P(g), as defined by (1.1), are nonconstant. Suppose that f and g
share the value 0 CM and P(f), P(g) share the value 1 CM. If §(0; f) > %,
then either f = g or P(f)-P(g) = 1 under any one of the following hypotheses:

(i) p(f) #1,
(i) p() =1 and
(a) f has at most a finite number of zeros, or
(b) f has infinitely many zeros and f is of minimal type.

We now recall some well known notations of the value distribution theory.
Let F and G be two nonconstant meromorphic functions, which share the
value 1 IM. We denote by N(r,1; F) the reduced counting function of those
zeros of F'— 1 in {z :| z |< r}, which have larger multiplicities than those of
the corresponding zeros of G — 1. Also we denote by N 115) (r,1; F) the reduced
counting function of common simple zeros of ' — 1 and G — 1 in {z:| z |< 1},
and denote by Ng(r, 1; F') the counting function of those common multiple
zeros of FF—1 and G — 1 in {z :| z |< r}, where each such common multiple
zero of F'—1 and G — 1 has the same multiplicity related to F' — 1 and G — 1.
Likewise we define N (r, 1;G), Né) (r,1; G) and Ng(r, 1;G).

Also we denote by Ny)(r,0; F') the counting function of simple zeros of F'
and by N(Q(T,O;F ) the reduced counting function of multiple zeros of F' in

{z:| z|<r}.
2. Lemmas

In this section we present some necessary lemmas.

Lemma 2.1. Let f be a nonconstant meromorphic function and P(f) be de-
fined by (1.2). Then

T(r, P) <dT(r, f) + QN (r,00: f) + S(r, f)
and
N(r,0; P) <T(r,P)—dT(r, f)+dN(r,0; f)+ S(r, f)
< QN(r,00; f) +dN(r,0; f) + S(r, ).
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Proof. Since

N(r,P) < dN(r, f) + QN(r,00; f) + S(r, f) and
,%)—l—m(r,fd)zdm(r,f)—i—S(r,f),

m(r, f) < m(r

- /
we get
(2.1) T(r,P) < dI(r, f) + QN(r,00; f) 4+ S(r, f).
Now
(1,03 1%) < m(r,0:P) + m{r, £) = m(r. 0 P) + S(r.f)

and so

T(T,fd) —N(T,O;fd) < T(T‘,P) —N(T,O;P)+S(T,f)
ie.,
(2.2) N(r,0; P) <T(r,P)—dT(r,f)+dN(r,0; f)+ S(r, f).
The lemma follows from (2.1) and (2.2). O

Lemma 2.2 ([16]). Let F and G be two nonconstant meromorphic functions
such that F' and G share 1 IM. Then

T(r,F) < N(r,0;F) + N(r,00; F) + N(r,0; G) + N(r,00; G) + N2 (r, 1; F)
+NL(r,1;F) — No(r, 00; FY) — Ny(r,0; GV + S(r, F) + S(r, ),

where No(T,O;F(l)) denotes the counting function corresponding to the zeros
of F) that are not zeros of F and F — 1, No(r,0; G1)) denotes the counting
function corresponding to the zeros of GV that are not zeros of G and G — 1.

Lemma 2.3 ([2, p. 47]). Let f be a nonconstant meromorphic function and
a1, az,ag be three distinct members of S(f). Then

T(r,f) < N(r,0; f —a1) + N(r,0; f —aa) + N(r,0; f —a3z) + S(r, f).

Lemma 2.4 ([3]). Let f be a transcendental meromorphic function and P(f),
defined by (1.2), be nonconstant and d > 1. Then

dT(r, f) < N(r,00; f)+N(r, 1; P(£))+dN (r,0; f)—No(r,0; (P(f)) M) +S(r, f),

where No(r,0; (P(f)))) denotes the counting function corresponding to the
zeros of (P(f))) which are not the zeros of P(f) and P(f) — 1.

Remark 3. In fact Lemma 2.4 is a special case of Lemma 1 [3].

Lemma 2.5 ([12, p. 92]). Suppose that f1, fo,...,fn (n > 3) are meromorphic
functions which are not constants except for f,. Furthermore, let Z?Zlfj =1.

If frn Z0 and
DN 0; f5) + (n = 1)) N(r,00; f;) < {A+ o(1)}T(r, fi),
— =
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where r € I, a set of infinite linear measure, k =1,2,....,n—1 and 0 < X\ < 1,
then f, = 1.
3. Proof of theorems and corollaries

Proof of Theorem 1.1. Let F = @ and G = @. Then F and G share 1 IM
and so by Lemma 2.2 we get

T(r,F) < N(r,0;F) + N(r,00; F) + N(r,0; G) + N(r,00; G) + N2 (r, 1; F)

(3.1) +NL(r,1;F) — No(r,0; FO) — No(r,0; GP) + S(r, F) + S(r, G).
Let
F@  op@) elC)NTele)
= <F(1) - F—1> - (G(l) - G—l)'

We suppose that H # 0. Then by a simple calculation we see that
Np(r,1;F) < N(r,0; H)

<T(r,H)
(3.2) < N(r,o0;H) + S(r, F) + S(r,G)
and
N(r,o0; H) < W(Q(T,O;F) + N(r,00; F) +N(2(r,0; G)+ N(r,00; Q)
(3.3) +Np(r,1;F) + Np(r,1;G) + No(r,0; FV) + No(r,0; GV).

Noting that N (r,0; F)+ N (r,0; F) < N(r,0; F) and combining (3.1), (3.2)
and (3.3) we get

T(r,F) < N(r,0; F) 4+ 2N(r,00; F) + N(r,0; G) + 2N (r, 00; G)
(3.4) +2N(r,1; F)+ N(r,1;G) + S(r, F) + S(r,G).
Now by Lemma 2.1 and (3.4) we get
N(r,0; F) <T(r,F)—dT(r,F)+dN(r,0; )+ S(r, )
< N(r,0; F) 4+ 2N(r,00; F) + QN (r,00; g) + dN(r,0; g)
+2N(r,00;9) +2N1(r,1; F) + Np(r,1;G) — dT(r, f)
+dN(r,0; f) + S(r, f) + S(r,9)
and so
AT(r, f) < AN (r,0; f) + 2N(r, 00; f) + AN (r,0:9) + (Q + 2)N (r, 003 )
(3.5) +2Np(r,1;F)+ Nr(r,1;G) + S(r, f) + S(r, g).
Again using Lemma 2.1 we obtain
Nrp(r,1;F) < N(r,1; F) — N(r,1; F)
< N(r,0; FV)
< N(r,0; F) + N(r,00; F) + S(r, F)
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(3.6) < AN(r, 05 f) +(Q + 1)N(r, 00, f) + S(r, ).
Similarly
(3.7) Ni(r,1;G) <dN(r,0:9) + (Q + 1)N(r, 00 9) + S(r, g).
Combining (3.5), (3.6) and (3.7) we obtain

T(r, ) < 3N(r,0; f) + QQJ N (r, 001 ) + 2N (1, 059)
(35) + ZLEIN(r 0019) + 5(r, 1) + S(r,9).
Likewise we have

T(r,9) < 3N(r,0:9) + “LEAN(r 0019) + 2N (1,05 )
(3.9) + ZLEIN 001 )+ S0, 1) + S(r,0).

Adding (3.8) and (3.9) we obtain

4Q +T—
d

T(r,f)+T(r,g) <5N(r,0; f)+ N(r,00; f) +5N(r,0;9)

TN (r0019) + 507, ) + (1,9,

which implies a contradiction to the hypothesis. Therefore H = 0 and so on
integration we get

+

1 A
- —-_“ B
G-1 F-1 +5,
where A(# 0) and B are constants. This gives
B+1)F+(A-B-1)
BF+A-B

(3.10) G-\

and
(B-A)G+(A-B-1)
BG - (B+1)

(3.11) F=

We now consider the following three cases. o o
Case 1: Let B # 0,—1. From (3.11) we have N(r, 282:G) = N(r, 00; F).
Now by the second fundamental theorem and Lemma 2.2 we get

— B+1 —
T(r,G) < N(r,0;G) + N(r, == G) + N(r,00:G) + 5(r, )

< T(r,G) —dT(r,g) + dN(r,0;g) + N(r,00; F) + N(r,00; G) + S(r, 9)
ie.,

(3.12) dT(r,g) < dN(r,0;g) + N(r,00; f) + N(r,00;9) + S(r, g).
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If A— B—1+#0, from (3.10) we have N(r, £5254; F) = N(r,0;G). Hence
by the second fundamental theorem and Lemma 2.2 we get
B+1-A
B+1

<T(r,F)—dT(r, f) + dN(r,0; f) + N(r,0; G) + N(r,00; f) + S(r, f)

T(r,F) < N(r,0;F) + N(r, F)+ N(r,00; F) + S(r, F)

ie.
dI'(r, f) < dN(r,0; f) + dN(r,0; g) + N(r,00; f)
(3.13) +QN(r,00:9) + S(r, f) + S(r, g).
Combining (3.12) and (3.13) we obtain

T(r, f)+T(r,g) < N(r,0; f) + zW(TaOO;f) +2N(r,0;9)

d
LN, 0019) + S0, 1) + 510 9),

a contradiction.
Hence A — B —1 =0 and from (3.10) we get

o_ BADF

~ BF+1°
Therefore N(r,0;F + %) = N(r,00;G). Again by the second fundamental
theorem and Lemma 2.2 we obtain

— 1 —
T(r,F)< N(r,0; F)+ N(r,0; F + E) + N(r,00; F) + S(r, F)
< T(r,F)—dT(r,f) +dN(r,0; ) + N(r,00;9) + N(r, 00; f) + S(r, f)

ie.,
(3.14) dT(r, f) < dN(r,0; f) + N(r,00; f) + N(r,00;g) + S(r, ).
Combining (3.12) and (3.14) we have

T(r, )+ T(r,9) < N(r0: ) + N(r,0:9) + 5N 00: f)

+ 3]\7(7"700,9) +S(T,f> +S(Tvg)7

a contradiction.
Case 2: We suppose that B = 0. From (3.10) and (3.11) we have

F+A-1
G="T1— ad F=AG+1-A
If A—1 40, then it follows that
A—-1
N(r,1—A;F)=N(r,0;G) and N(T,T;G):N(T,O;F).

Using the similar argument of Case 1 we arrive at a contradiction. Therefore
A—1=0andso P(f) = P(g).
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Case 3: We suppose that B = —1. From (3.10) and (3.11) we get

A (A+1)G-A
¢~ F ™ g
If A+ 120, we obtain
_ — A
N(r,A+1;F)=N(r,00;G) and N(T,A—H;G):N(T,O;F).
Using the similar argument of Case 1 we arrive at a contradiction. Therefore
A+1=0andso P(f)P(g) = a® This proves the theorem. g

Proof of Theorem 1.2. Let F = @ and G = @. Then F' and G share 1 IM
and so by Lemma 2.2 and Lemma 2.5 we get

dT(r, f) < N(r,00; f)+ N(r,1; F) +dN(r,0; f) + S(r, f)
N(r,00;9) + N(r,1;G) +dN(r,0;9) + S(r, f)

(3.15) < (14+2d+Q)T(ryg)+ S(r, f)+ S(r,g).

Similarly

(3.16) dT(r,g) < (14 2d+ Q)T (r, f) + S(r, f) + S(r, 9).

From (3.15) and (3.16) we get S(r, f) = S(r,g). The rest of the proof is similar
to that of Theorem 1.1. This proves the theorem. O

Proof of Corollary 1.1. By Theorem 1.1 we get either a?(f®g*)» = 1 or
(fEN) = (g™, We suppose that (fF))" = (g¥)). Then f*) = wg®),
where w is a constant satisfying w™ = 1. Integrating k£ times we obtain f =
wg + p, where p is a polynomial of degree at most k£ — 1. From the hypothesis
it is clear that f and g are transcendental meromorphic functions. If p # 0, by
Lemma 2.3 we get

T(r, f) < N(r,0; f) + N(r,0; f — p) + N(r,00; f) + S(r, f)
(3.17) = N(r,0; f) + N(r,0;g) + N(r,00; f) + S(r, f)
and

T(r,g) < N(r,0;9) + N(r,0;g + g) +N(r,00;9) + S(r, g)
(3.18) = N(r,0;9) + N(r,0; f) + N(r,00; g) + S(r, g).
Combining (3.17) and (3.18) we obtain

T(r, f) +T(r,g) < 2N(r,0; f) + 2N (r,0: g) + N(r, 00; f)

+N(r,00:9) + S(r, ) + S(r,9),

which contradicts the hypothesis. Therefore p = 0 and so f = wg.
If, further, f(z0) = g(20) # 0 for some zy € C, then clearly w = 1 and so
f = g. This proves the corollary. O
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Proof of Corollary 1.2. By Theorem 1.3 we get either P(f) = P(g) or P(f) -
P(g) =1. Let P(f) = P(g) so that P(g — f) =0. Then

(3.19) g—f= ij(z)eafz,
j=1

where m(< k) is a positive integer, a;’s are distinct complex constants and
p;j(#)’s are nonzero polynomials.

Since f and g share 0 CM, we can put g = f - e”, where h is an entire
function.

Let e # 1, otherwise we are done. So from (3.19) we get

Since f is entire, we see that N(r,0;e" —1) < N(r,0; ZTzlpj(z)eo‘jz) and by
the second fundamental theorem we get

T(r,e") < N(r,00;e") + N(r,0;e") + N(r,0;e" — 1) + S(r,e")

<N T,O;ij(z)eo‘jz + S(r,e™)

(3.20) = O(logr) 4+ O(r) + S(r,e™).

If h is transcendental or a polynomial of degree at least 2, then from (3.20)
we see that T(r,e") = S(r,e"), contradiction. Hence h is a polynomial of
degree at most 1.

First we assume that h is a constant. Then P(f) = P(g) = e"P(f) and so
e =1, which contradicts our assumption.

Next we assume that h(z) = az+b, where a(# 0) and b are constants. Then

Z;‘nzl pj(z)e%®

f= e — and so  p(f) <1.

We now consider the following cases.
Case 1: Let p(f) < 1.
Then by Milloux basic result [2, Theorem 3.2, p. 57] we get

T(r,f) < N(r,0; f) + N(r,1; P(f)) + S(r, f)
= N(r,0;9) + N(r,1; P(g)) + S(r, f)
<T(r,g)+T(r,P(g))+ S(r,f)
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=T(r,g) +m(r, P(g)) + S(r, f)

< T0g) 4 i)+ (1 22 ) 40 )
(3.21) =2T(r,g) + S(r,g) + S(r, f).
Similarly
(3.22) T(r,g) <2T(r, )+ S(r, f) + S(r, 9).

Since f and so g is of finite order, from (3.21) and (3.22) we see that p(f) =
p(g). Therefore

ple) = p () < max(p(1). plo)} < 1.

which is impossible as a # 0.
Case 2: Let p(f) = 1.

We now consider the following subcases.
Subcase 2.1: Let f have at most a finite number of zeros.
We put f(2) = q(2)e®*T%, where ¢(z) is a polynomial. Then

9(2) = g(2)eler =D
and so P(f) = P(g) implies
@1 (2)e T = gy (z)elot)zH+d),

where q1, g2 are polynomials. This implies g2(2)e***® = ¢;(z), which is impos-
sible as a # 0.
Subcase 2.2: Let f have infinitely many zeros and f be of minimal type.
We put

H;(z)= pj(z% for 1 < j < m, and H,,1,(z) = e
" opi(2)evi®
Then f = Mf—b()l implies
ellZ —
m—+1
(3.23) > Hi(z)=1.
j=1

Let one of a;’s, say a; be zero. Then H; # 0 and we rewrite (3.23) as

m—+1
ZHj(z) +Hi(z)=1.

Now
m—+1 m—+1 m—+1
ZN(T,O;Hj) + mZW(r,oo;Hj) = ZN(T,O;pj) +m?*N(r,0; f)
j=1 j=1 j=1

(3.24) = O(logr) +m*N(r,0; f).
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Hj(z)) f, we get

p;(z
T(r,e**) <T(r,H;)+T(r, f)+ O(logr).

Since %% = —

This implies
laj| _ T(r,Hj)  T(r, f)

—L < - +o(1)
r r
and so
T(r,H,; T ;
liminfM + limsupM > M.
T—00 T r—00 r
Since f is of minimal type, we get
T(r,H,
1iminfM >Kforj=223,...,m,
r—00 r
where K = minggjgmlc;—jl > 0.
Hence for j =1,2,...,m we get
: N(r,0;f) _ .. T(rf) . r
limsup——— < limsup————= - limsup—— = 0.
r—>oop T(r, Hj) - T—>oop r r—>oopT(Tv Hj)
Also o
: N(r0f) _ @ T(r, f)
limsup—— < —limsu =0.
r—>oopT(r, Hm+1) T a 7‘—>oop r
So from (3.24) we see that
m—+1 m+1
> ON(r,0;Hj) +m Y N(r,00; H;) < {\+ o(1)}T(r, Hy)
j=1 j=1

for k=2,3,...,m+ 1, where A (0 < A < 1) is a suitable constant.
Therefore by Lemma 2.5 we get Hi(z) = 1, which is impossible as p(f) = 1.

So, a;j # 0 for j =1,2,...,m. Now adopting the same technique as above
we get H,,11(z) = 1, which contradicts our assumption that e # 1. This
proves the corollary. O

Remark 4. Tt is an interesting open problem to examine the validity of corollary
1.2 for entire functions f and g where f is of unit order with nonminimal type
and f has infinitely many zeros.

Acknowledgement. The authors are thankful to the referee for valuable
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