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THREE-POINT BOUNDARY VALUE PROBLEMS FOR

HIGHER ORDER NONLINEAR FRACTIONAL

DIFFERENTIAL EQUATIONS

RAHMAT ALI KHAN∗

Abstract. The method of upper and lower solutions and the generalized
quasilinearization technique is developed for the existence and approxima-
tion of solutions to boundary value problems for higher order fractional

differential equations of the type
cDqu(t) + f(t, u(t)) = 0, t ∈ (0, 1), q ∈ (n− 1, n], n ≥ 2

u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0, u(1) = ξu(η),

where ξ, η ∈ (0, 1), the nonlinear function f is assumed to be continuous
and cDq is the fractional derivative in the sense of Caputo. Existence of

solution is established via the upper and lower solutions method and ap-
proximation of solutions uses the generalized quasilinearization technique.
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1. Introduction

Fractional differential equations is rapidly growing area of differential equa-
tions both theoretically and in practical point of view to real world problems.
The theory of existence of solutions to nonlinear boundary value problems cor-
responding to fractional differential equations have recently been attracted the
attention of many researchers, see for example [4, 5, 6, 7, 10, 11, 15, 17, 18, 19, 21]
and the references therein. In these cited references, sufficient conditions for ex-
istence of solutions are established via the classical tools of functional analysis
and fixed point theory. To estimate the exact solution of a nonlinear problem
and to develop algorithms for approximating the exact solutions, the method
of upper and lower solutions plays a fundamental role. The method of upper
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and lower solutions for existence and multiplicity results are well studied for
boundary value problems involving integer order derivatives. But, the upper
and lower solutions method for the existence of solutions to boundary value
problems corresponding to fractional differential equations is not well developed
and as for as I know, only few results can be found in the literature dealing with
the upper and lower solutions method [14, 20]. The quasilinearization method
is developed for initial value problems corresponding to fractional differential
equations [8, 9, 13, 16] but results dealing with quasilinearization to boundary
value problems for higher order fractional differential equations can hardly be
seen in the literature. For nice contribution to the literature of boundary value
problems for fractional differential equations, the problem we study is a strong
candidate. The motivation of this paper is to develop comparison result and the
upper and lower solutions method for the existence of solution to a class of multi-
point boundary value problems (BVPs) for higher order fractional differential
equations

cDqu(t) + f(t, u(t)) = 0, t ∈ (0, 1), q ∈ (n− 1, n], n ≥ 2

u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0, u(1) = ξu(η),
(1)

where ξ, η ∈ (0, 1), the function f : [0, 1] × R → R is continuous and may be
nonlinear.

We develop the quasilinearization method for approximating the solution of
the problem as sequence of solutions of linear problems. I am grateful to the
reviewer who directed my attentions to the recent interested work studied in
[1, 2, 3]. In these references, the authors studied BVPs for higher order fractional
differential equations too via the classical tools functional analysis using fixed
point theorems. But not only our problem is different from the problems they
studied but also our objectives are different. To the best of my knowledge, the
upper and lower solutions method and the quasilinearization technique for higher
order fractional differential equations subject to three-point boundary conditions
have never been studied previously.

2. Preliminaries

We recall some basic definitions and lemmas from fractional calculus [12].

Definition 2.1. The fractional integral of order q > 0 of a function u : (0,∞) →
R is defined by

Iqu(t) =
1

Γ(q)

∫ t

0

u(s)

(t− s)1−q
ds,

provided the integral converges.

Definition 2.2. The Caputo fractional derivative of order q > 0 of a function
u ∈ ACn[0, 1] is defined by

cDq
0+u(t) =

1

Γ(n− q)

∫ t

0

un(s)

(t− s)q−n+1
ds, where n = ⌈q⌉,
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provided that the right side is pointwise defined on (0,∞).

Lemma 2.1 ([5]). For q > 0, u ∈ C(0, 1) ∩ L(0, 1), the homogenous functional
differential equation cDq

0+u(t) = 0, has a solution u(t) = c1 + c2t + c3t
2 + ... +

cnt
n−1, where ci ∈ R and n = ⌈q⌉+ 1.

Lemma 2.2. Assume that u ∈ C(0, 1)∩L(0, 1) with derivatives of order n that
belong to u ∈ C(0, 1) ∩ L(0, 1), then

IqcDqu(t) = u(t) + c1 + c2t+ c3t
2 + ...+ cnt

n−1,

where, ci ∈ R and n = ⌈q⌉+ 1.

For the purpose of comparison result, consider the following boundary value
problem for fractional differential equation

cDqu(t) + h(t) = 0, t ∈ (0, 1), n− 1 < q ≤ n, n ≥ 2

u′(0) = a1, u
′′(0) = a2, ..., u

n−1(0) = an−1, u(1)− ξu(η) = b,
(2)

where h ∈ C[0, 1], b, aj ∈ R, j = 1, 2, ..., n− 1. The boundary value problem (2)
is equivalent to the following integral equation

u(t) =
b

(1− ξ)
− 1

(1− ξ)

n−1∑
j=1

aj
j!
ψj +

∫ 1

0

k(t, s)f(s, u(s))ds, t ∈ [0, 1], (3)

where ψj(t) = (1− tj)− ξ(ηj − tj) and the Green function k(t, s) is given by

k(t, s) =



(1−s)q−1−(1−ξ)(t−s)q−1−ξ(η−s)q−1

(1−ξ)Γ(q) , s ≤ t ≤ 1, η ≥ s,
(1−s)q−1−(1−ξ)(t−s)q−1

(1−ξ)Γ(q) , η ≤ s ≤ t ≤ 1,
(1−s)q−1−ξ(η−s)q−1

(1−ξ)Γ(q) , 0 ≤ t ≤ s ≤ η < 1,
(1−s)q−1

(1−ξ)Γ(q) , 0 ≤ t ≤ s ≤ 1, η ≤ s.

Clearly, ψj(t) > 0 on (0, 1) and from the expression of k(t, s), it follows that
k(t, s) ≥ 0 on (0, 1) × (0, 1). Hence, if b ≥ 0, aj ≤ 0, j = 1, 2, ...n − 1 and
h(t) ≥ 0, for t ∈ [0, 1], then u(t) ≥ 0. On the other hand, if b ≤ 0, aj ≥ 0,
j = 1, 2, ...n − 1 and h(t) ≤ 0, for t ∈ [0, 1], then u(t) ≤ 0 Thus, we have the
following comparison result.
Comparison results: (i) If u′(0) ≤ 0, u′′(0) ≤ 0, ..., un−1(0) ≤ 0, u(1) ≥ ξu(η)
and cDqu(t) ≤ 0 on (0, 1) for q ∈ (n− 1, n], then any solution u of −cDqu(t) =
h(t) is such that u ≥ 0 on (0, 1). (ii) If u′(0) ≥ 0, u′′(0) ≥ 0, ..., un−1(0) ≥
0, u(1) ≤ ξu(η) and cDqu(t) ≥ 0 on (0, 1) for q ∈ (n− 1, n], then any solution u
of −cDqu(t) = h(t) is such that u ≤ 0 on (0, 1).

Hence we introduce the definition of upper and lower solutions corresponding
to the BVP (1) as follows:

Definition 2.3. A function α is called a lower solution of the BVP (1), if
α ∈ Cn−1[0, 1] and satisfies

−cDqα(t) ≤ f(t, α(t)), q ∈ (n− 1, n], t ∈ (0, 1),
α′(0) ≥ 0, α′′(0) ≥ 0, ..., αn−1(0) ≥ 0, α(1) ≤ ξα(η).
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An upper solution β ∈ Cn−1[0, 1] of the BVP (1) is defined similarly by reversing
the inequality.

Define β̄ = max{β(t) : t ∈ [0, 1]} and ᾱ = min{α(t) : t ∈ [0, 1]}.

3. Main results

Theorem 3.1. Assume that there exist lower and upper solutions α, β ∈ C[0, 1]
of the BVP (1) such that α ≤ β on [0, 1]. Assume that f : [0, 1] × R → (0,∞)
is continuous and non-decreasing with respect to u on [0, 1]. Then the BVP (1)
has C[0, 1] positive solution u such that α(t) ≤ u(t) ≤ β(t), t ∈ [0, 1].

Proof. Define the following modification of f

F (t, u) =


f(t, β(t)), if u ≥ β(t),

f(t, u(t)), if α(t) ≤ u ≤ β(t),

f(t, α(t)), if u ≤ α(t)

(4)

and consider the modified BVP for fractional differential equations

−cDqu(t) = F (t, u(t)), q ∈ (n− 1, n], n ≥ 2, t ∈ (0, 1),

u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0, u(1) = ξu(η),
(5)

which is equivalent to the integral equation

u(t) =

∫ 1

0

k(t, s)F (s, u(s))ds, t ∈ [0, 1].

By a solution of the BVP (5) we mean a solution of the integral equation, that
is, a fixed point of the operator equation (I−A)u(t) = 0, where I is the identity

operator and Au(t) =
∫ 1

0
k(t, s)F (s, u(s))ds, t ∈ [0, 1].

Further, if u is a solution of the modified problem (5) such that α(t) ≤ u(t) ≤
β(t), t ∈ [0, 1], then u is a solution of the BVP (1). Since F is continuous and
bounded on [0, 1] × R, it follows by Schauder’s fixed point theorem that the
integral equations and hence the BVP has a solutions.

We only need to show that α(t) ≤ u ≤ β(t), t ∈ [0, 1], where u is solution
of the BVP (5). For each fixed t ∈ [0, 1], the non-decreasing property of f(t, u)
with respect to u implies that F (t, u) is non-decreasing with respect to u on
[ᾱ, β̄] and

f(t, α(t)) ≤ F (t, u) ≤ f(t, β(t)), (t, u) ∈ [0, 1]×R. (6)

Define m(t) = α(t)− u(t), t ∈ [0, 1], where u is solution of the BVP (5), then in
view of the boundary conditions, we obtainm′(0) ≥ 0, m′′(0) ≥ 0, ...,mn−1(0) ≥
0, m(1) ≤ ξm(η). Using the definition of lower solution and (6), for each t ∈
[0, 1], we obtain

−cDqm(t) = −Dqα(t) +Dqu(t) ≤ f(t, α(t))− F (t, u(t)) ≤ 0, q ∈ (n− 1, n].

Hence, by comparison result m(t) ≤ 0, t ∈ [0, 1]. Similarly, we can show that
u(t) ≤ β(t), t ∈ [0, 1]. �
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To approximate the solutions of the BVP (1), we develop the generalized
quasilinearization technique.

Theorem 3.2. Under the hypothesis of Theorem 3.1, there exists a bounded
monotone sequence of solutions of linear problems converging uniformly and
quadratically to a solution of the problem (1).

Proof. Choose a function ϕ(t, u) with ϕ, ϕu, ϕuu ∈ C([0, 1]×R) such that

∂2

∂u2
[f(t, u) + ϕ(t, u)] ≥ 0 on [0, 1]× [ᾱ, β̄]. (7)

Define F ∗ : [0, 1] × R → R by F ∗(t, u) = f(t, u) + ϕ(t, u). Note that F ∗ ∈
C([0, 1]×R) and

∂2

∂u2
F ∗(t, u) ≥ 0 on [0, 1]× [ᾱ, β̄], (8)

which implies that

f(t, u) ≥ f(t, y) + F ∗
u (t, y)(u− y)− [ϕ(t, u)− ϕ(t, y)], t ∈ [0, 1], (9)

where u, y ∈ [ᾱ, β̄]. Using the non decreasing property of ϕu with respect to u
on [ᾱ, β̄] for each t ∈ [0, 1], we obtain

ϕ(t, u)− ϕ(t, y) = ϕu(t, c)(u− y) ≤ ϕu(t, β̄)(u− y) for u ≥ y, (10)

where u, y ∈ [ᾱ, β̄] such that y ≤ c ≤ u. Substituting in (9), for u ≥ y, we have

f(t, u) ≥ f(t, y) + [F ∗
u (t, y)− ϕu(t, β̄)](u− y) ≥ f(t, y) + λ(u− y), (11)

where λ = min{0,min{F ∗
u (t, ᾱ) − ϕu(t, β̄) : t ∈ [0, 1]}}. We note that λ ≤

F ∗
u (t, z)− ϕu(t, β̄) ≤ fu(t, β̄) : t ∈ [0, 1].
Define g : [0, 1]×R×R→ R by

g(t, u, y) = f(t, y) + λ(u− y). (12)

We note that g(t, u, y) is continuous on [0, 1]×R×R and for u, y ∈ [ᾱ, β̄], using
(11) and (12), we have {

f(t, u) ≥ g(t, u, y), for u ≥ y,

f(t, u) = g(t, u, u).
(13)

Now, we develop the iterative scheme to approximate the solution. As an initial
approximation, we choose w0 = α and consider the linear problem

−cDqu(t) = g(t, u(t), w0(t)), q ∈ (n− 1, n], t ∈ [0, 1]

u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0, u(1) = ξu(η).
(14)

The definition of lower and upper solutions and (13) imply that

g(t, w0(t), w0(t)) = f(t, w0(t)) ≥ −cDqw0(t), q ∈ (n− 1, n], t ∈ [0, 1]

g(t, β(t), w0(t)) ≤ f(t, β(t)) ≤ −cDqβ(t), q ∈ (n− 1, n], t ∈ [0, 1],

which imply that w0 and β are lower and upper solutions of (14) and since
w0 = α ≤ β on [0, 1]. Hence by Theorem 3.1, there exists a solution w1 ∈ C[0, 1]
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of (14) such that w0 ≤ w1 ≤ β on [0, 1]. Again, from (13) and the fact that w1

is a solution of (14), we obtain

−cDqw1(t) = g(t, w1(t), w0(t)) ≤ f(t, w1(t)), q ∈ (n− 1, n], t ∈ [0, 1], (15)

which implies that w1 is a lower solution of (1).
Similarly, we can show that w1 and β are lower and upper solutions of the

linear problem

−cDqu(t) = g(t, u(t), w1(t)), q ∈ (n− 1, n], t ∈ [0, 1]

u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0, u(1) = ξu(η).
(16)

Hence by Theorem 3.1, there exists a solution w2 ∈ C[0, 1] of (16) such that
w1 ≤ w2 ≤ β on [0, 1]. Continuing in the above fashion, we obtain a bounded
monotone sequence {wn} of solutions of linear problems satisfying

w0 ≤ w1 ≤ w2 ≤ w3 ≤ ... ≤ wn ≤ β on [0, 1], (17)

where the element wn of the sequence is a solution of the linear problem

−cDqu(t) = g(t, u(t), w0(t)), q ∈ (n− 1, n], t ∈ [0, 1]

u′(0) = 0, u′′(0) = 0, ..., un−1(0) = 0, u(1) = ξu(η)

and is given by

wn(t) =

∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds, t ∈ [0, 1]. (18)

The monotonicity and uniform boundedness of the sequence {wn} implies the
existence of a pointwise limit w on [0, 1] such that wn → w uniformly. From the
dominated convergence theorem, it follows that for any t ∈ [0, 1],∫ 1

0

G(t, s)g(s, wn(s), wn−1(s))ds→
∫ 1

0

G(t, s)f(s, w(s))ds.

Passing to the limit as n → ∞, (18) yields w(t) =
∫ 1

0
G(t, s)f(s, w(s))ds, t ∈

[0, 1], which is integral representation of the BVP (1), implies that w is a solution
of (1).

Now, we show that the convergence is quadratic, set en(t) = w(t)−wn(t), t ∈
[0, 1], where w is a solution of (1). Then, en(t) ≥ 0 on [0, 1] and from the
boundary conditions, e′n(0) = 0, e′′n(0) = 0, ..., en−1

n (0) = 0, en(1) = ξen(η). For
every t ∈ [0, 1], we have

−cDqen(t) = F ∗(t, w(t))− ϕ(t, w(t))− f(t, wn−1(t))− λ(wn(t)− wn−1(t)). (19)

Using the mean value theorem and the nondecreasing property of ϕu, that is,
ϕuu ≥ 0 on [0, 1]× [ᾱ, β̄], we obtain,

ϕ(t, w(t)) ≥ ϕ(t, wn−1(t)) + ϕu(t, wn−1(t))(w(t)− wn−1(t))

≥ ϕ(t, wn−1(t)) + ϕu(t, ᾱ)(w(t)− wn−1(t)),
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F (t, w(t)) = F (t, wn−1(t)) + Fu(t, wn−1(t))(w(t)− wn−1(t))

+
Fuu(t, δ)

2
(w(t)− wn−1(t))

2

≤ F (t, wn−1(t)) + Fu(t, β̄)(w(t)− wn−1(t)) +
Fuu(t, δ)

2
(w(t)− wn−1(t))

2,

where wn−1 ≤ δ ≤ w. Hence,

F (t, w(t))− ϕ(t, w(t)) ≤ f(t, wn−1(t)) + [Fu(t, β̄)− ϕu(t, ᾱ)](w(t)− wn−1(t))

+
Fuu(x, δ)

2
(w(t)− wn−1(t))

2.

Hence the equation (19) can be rewritten as

−cDqen(t) ≤ [Fu(t, β̄)− ϕu(t, ᾱ)]en−1(t) +
Fuu(t, δ)

2
(en−1(t))

2−

λ(en−1(t)− en(t))

≤ [Fu(t, β̄)− ϕu(t, ᾱ)− λ]en−1(t) + λen(t) +
Fuu(t, δ)

2
(en−1(t))

2

≤ [Fu(t, β̄)− ϕu(t, ᾱ)− λ]en−1(t) +
Fuu(t, δ)

2
(en−1(t))

2

≤ ρen(t) + d∥en−1∥2,

(20)

where ρ = max{Fu(t, β̄) − ϕu(t, ᾱ) − λ : t ∈ [0, 1]} ≥ 0 and d = max{Fuu(t,y)
2 :

y ∈ [ᾱ, β̄]}. By comparison result, en(t) ≤ z(t), t ∈ [0, 1], where z(t) is a unique
solution of the linear BVP

−cDq
0+z(t)− ρz(t) = d∥en−1∥2, q ∈ (n− 1, n]

z′(0) = 0, z′′(0) = 0, ..., zn−1(0) = 0, z(1) = ξz(η),
(21)

and is given by

en(t) ≤ z(t) =

∫ 1

0

k1(t, s)d∥en−1∥2 ≤ A∥en−1∥2, (22)

whereA = max{d
∫ 1

0
k1(t, s)}, k(t, s) is the Green’s function corresponding to the

homogenous problem −cDqu(t)− ρu(t) = 0, u′(0) = 0, u′′(0) = 0, ..., un−1(0) =
0, u(1) = ξu(η). Hence the convergence is quadratic. �
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