• 제목/요약/키워드: Dielectric Etching

Search Result 153, Processing Time 0.032 seconds

The surface kinetic properties between $BCl_3/Cl_2$/Ar plasma and $Al_2O_3$ thin film

  • Yang, Xue;Kim, Dong-Pyo;Um, Doo-Seung;Kim, Chang-Il
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.169-169
    • /
    • 2008
  • To keep pace with scaling trends of CMOS technologies, high-k metal oxides are to be introduced. Due to their high permittivity, high-k materials can achieve the required capacitance with stacks of higher physical thickness to reduce the leakage current through the scaled gate oxide, which make it become much more promising materials to instead of $SiO_2$. As further studying on high-k, an understanding of the relation between the etch characteristics of high-k dielectric materials and plasma properties is required for the low damaged removal process to match standard processing procedure. There are some reports on the dry etching of different high-k materials in ICP and ECR plasma with various plasma parameters, such as different gas combinations ($Cl_2$, $Cl_2/BCl_3$, $Cl_2$/Ar, $SF_6$/Ar, and $CH_4/H_2$/Ar etc). Understanding of the complex behavior of particles at surfaces requires detailed knowledge of both macroscopic and microscopic processes that take place; also certain processes depend critically on temperature and gas pressure. The choice of $BCl_3$ as the chemically active gas results from the fact that it is widely used for the etching o the materials covered by the native oxides due to the effective extraction of oxygen in the form of $BCl_xO_y$ compounds. In this study, the surface reactions and the etch rate of $Al_2O_3$ films in $BCl_3/Cl_2$/Ar plasma were investigated in an inductively coupled plasma(ICP) reactor in terms of the gas mixing ratio, RF power, DC bias and chamber pressure. The variations of relative volume densities for the particles were measured with optical emission spectroscopy (OES). The surface imagination was measured by AFM and SEM. The chemical states of film was investigated using X-ray photoelectron spectroscopy (XPS), which confirmed the existence of nonvolatile etch byproducts.

  • PDF

Multimode fiber-optic pressure sensor based on dielectric diaphragm (유전체 다이아프램을 이용한 다모드 광섬유 압력센서)

  • 김명규;권대혁;김진섭;박재희;이정희;손병기
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.3
    • /
    • pp.220-226
    • /
    • 1997
  • An optical intensity-type pressure sensor has been fabricated by coupling multimode optical fiber with 100 nm-Au/30 nm-NiCr/150 nm-$Si_3N_4/300 nm-SiO_2/150 nm-Si_3N_4$ optical reflection layer supported by micromachined frame-shape silicon substrate, and its characteristics was investigated. For the application of $Si_3N_4/SiO_2/Si_3N_4$ diaphragm to the optical reflection layer of the sensor, NiCr and Au films were deposited on the backside of the diaphragm by thermal evaporation , respectively, and thus optical low caused by transmission in the reflection layer could be decreased to a few percents. Dielectric diaphragms with uniform thickness were able to be also reproduced because top- and bottom-$Si_3N_4$ layer of the diaphragm could automatically stop silicon anisotropic etching. The respective pressure ranges in which the sensor showed linear optical output power-pressure characteristics were 0~126.64 kPa, 0~79. 98 kPa, and 0~46.66 kPa, and the respective pressure sensitivities of the sensor were about 20.69 nW/kPa, 26.70 nW/kPa, and 39.33 nW/kPa, for the diaphragm sizes of 3$\times$3 $\textrm{mm}^2$, 4$\times$4 $\textrm{mm}^2$, and 5$\times$5 $\textrm{mm}^2$, indicating that the sensitivity increases as diaphragm size increases.

  • PDF

Fabrication and characterization of $WSi_2$ nanocrystals memory device with $SiO_2$ / $HfO_2$ / $Al_2O_3$ tunnel layer

  • Lee, Hyo-Jun;Lee, Dong-Uk;Kim, Eun-Kyu;Son, Jung-Woo;Cho, Won-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.134-134
    • /
    • 2011
  • High-k dielectric materials such as $HfO_2$, $ZrO_2$ and $Al_2O_3$ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the $WSi_2$ nanocrystals nonvolatile memory device with $SiO_2/HfO_2/Al_2O_3$ tunnel layer. The $WSi_2$ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of $SiO_2/HfO_2/Al_2O_3$ (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate $WSi_2$ nanocrystals, the ultrathin $WSi_2$ film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at $900^{\circ}C$ for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick $SiO_2$ control layer was deposited by using ultra-high vacuum magnetron sputtering. For $SiO_2$ layer density, the second post annealing process was carried out at $900^{\circ}C$ for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

  • PDF

Characteristics of A Diaphragm-Type Fiber Optic Fabry-Perot Interferometric Pressure Sensor Using A Dielectric Film (유전체 박막을 이용한 다이아프램형 광섬유 Fabry-Perot 간섭계 압력센서의 특성)

  • Kim, M.G.;Yoo, Y.W.;Kwon, D.H.;Lee, J.H.;Kim, J.S.;Park, J.H.;Chai, Y.Y.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.3
    • /
    • pp.147-153
    • /
    • 1998
  • The strain characteristics of a fiber optic Fabry-Perot pressure sensor with high sensitivity using a $Si_{3}N_{4}/SiO_{2}/Si_{3}N_{4}$ (N/O/N) diaphragm is experimentally investigated. A 600 nm thick N/O/N diaphragm was fabricated by silicon anisotropic etching technology in 44 wt% KOH solution. An interferometric fiber optic pressure sensor has been manufactured by using a fiber optic Fabry-Perot intereferometer and a N/O/N diaphragm. The 2 cm length fiber optic Fabry-Perot interferometers in the continuous length of single mode fiber were produced with two pieces of single mode fiber coated with $TiO_{2}$ dielectric film utilizing the fusion splicing technique. The one end of the fiber optic Fabry-Perot interferometer was bonded to a N/O/N diaphragm. and the other end was connected to an optical setup through a 3 dB coupler. For the N/O/N diaphragm sized $2{\times}2\;mm^{2}$ and $8{\times}8\;mm^{2}$, the pressure sensitivity was measured 0.11 rad/kPa and 1.57 rad/kPa, respectively, and both of the nonlinearities were less than 0.2% FS.

  • PDF

Investigation of $WSi_2$ Gate for the Integration With $HfO_3$gate oxide for MOS Devices (MOS 소자를 위한 $HfO_3$게이트 절연체와 $WSi_2$게이트의 집적화 연구)

  • 노관종;양성우;강혁수;노용한
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.832-835
    • /
    • 2001
  • We report the structural and electrical properties of hafnium oxide (HfO$_2$) films with tungsten silicide (WSi$_2$) metal gate. In this study, HfO$_2$thin films were fabricated by oxidation of sputtered Hf metal films on Si, and WSi$_2$was deposited directly on HfO$_2$by LPCVD. The hysteresis windows in C-V curves of the WSi$_2$HfO$_2$/Si MOS capacitors were negligible (<20 mV), and had no dependence on frequency from 10 kHz to 1 MHz and bias ramp rate from 10 mV to 1 V. In addition, leakage current was very low in the range of 10$^{-9}$ ~10$^{-10}$ A to ~ 1 V, which was due to the formation of interfacial hafnium silicate layer between HfO$_2$and Si. After PMA (post metallization annealing) of the WSi$_2$/HfO$_2$/Si MOS capacitors at 500 $^{\circ}C$ EOT (equivalent oxide thickness) was reduced from 26 to 22 $\AA$ and the leakage current was reduced by approximately one order as compared to that measured before annealing. These results indicate that the effect of fluorine diffusion is negligible and annealing minimizes the etching damage.

  • PDF

The Evaluation for Reliability Characteristics of MOS Devices with Different Gate Materials by Plasma Etching Process (게이트 물질을 달리한 MOS소자의 플라즈마 피해에 대한 신뢰도 특성 분석)

  • 윤재석
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.297-305
    • /
    • 2000
  • It is observed that the initial properties and degradation characteristics on plasma of n/p-MOSFET with polycide and poly-Si as different gate materials under F-N stress and hot electron stress are affected by metal AR(Antenna Ratio) during plasma process. Compared to that of MOS devices with poly-Si gate material, reliability properties on plasma of MOS devices with polycide gate material are improved. This can be explained by that fluorine of tungsten polycide process diffuses through poly-Si into gate oxide and results in additional oxide thickness. The fact that MOS devices with polycide gate material can reduce damages of plasma process shows possibility that polycide gate material can be used as gate material for next generation MOS devices.

  • PDF

The Characteristics of (Ba,Sr)$TiO_3$ Thin Films Etched With The high Density $BCl_3/Cl_2$/Ar Plasma ($BCl_3/Cl_2$/Ar 고밀도 플라즈마에서 (Ba,Sr)$TiO_3$ 박막의 식각 특성에 관한 연구)

  • Kim, Seung-Bum;Kim, Chang-Il
    • Proceedings of the KIEE Conference
    • /
    • 1999.11d
    • /
    • pp.863-866
    • /
    • 1999
  • (Ba,Sr)$TiO_3$ thin films have attracted groat interest as new dielectric materials of capacitors for ultra-large-scale integrated dynamic random access memories (ULSI-DRAMs) such as 1 Gbit or 4 Gbit. In this study, inductively coupled $BCl_3/Cl_2$/Ar plasmas was used to etch (Ba,Sr)$TiO_3$ thin films. RF power/dc bias voltage = 600 W/-250 V and chamber pressure was 10 mTorr. The $Cl_2/(Cl_2+Ar)$ was fixed at 0.2, the (Ba,Sr)$TiO_3$ thin films were etched adding $BCl_3$. The highest (Ba,Sr)$TiO_3$ etch rate is 480$\AA/min$ at 10 % $BCl_3$ adding to $Cl_2$/Ar. The characteristics of the plasmas were estimated using optical emission spectroscopy (OES). The change of Cl, B radical density measured by OES as a function of $BCl_3$ percentage in $Cl_2$/Ar. The highest Cl radical density was shown at the addition of 10% $BCl_3$ to $Cl_2$/Ar. To study on the surface reaction of (Ba,Sr)$TiO_3$ thin films was investigated by XPS analysis. Ion enhancement etching is necessary to break Ba-O bond and to remove $BaCl_2$. There is a little chemical reaction between Sr and Cl, but Sr is removed by physical sputtering. There is a chemical reaction between Ti and Cl, and Tic14 is removed with ease. The cross-sectional of (Ba,Sr)$TiO_3$ thin film was investigated by scanning electron microscopy (SEM), the etch slope is about $65\;{\sim}\;70$.

  • PDF

A Preliminary Research on Optical In-Situ Monitoring of RF Plasma Induced Ion Current Using Optical Plasma Monitoring System (OPMS)

  • Kim, Hye-Jeong;Lee, Jun-Yong;Chun, Sang-Hyun;Hong, Sang-Jeen
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.523-523
    • /
    • 2012
  • As the wafer geometric requirements continuously complicated and minutes in tens of nanometers, the expectation of real-time add-on sensors for in-situ plasma process monitoring is rapidly increasing. Various industry applications, utilizing plasma impedance monitor (PIM) and optical emission spectroscopy (OES), on etch end point detection, etch chemistry investigation, health monitoring, fault detection and classification, and advanced process control are good examples. However, process monitoring in semiconductor manufacturing industry requires non-invasiveness. The hypothesis behind the optical monitoring of plasma induced ion current is for the monitoring of plasma induced charging damage in non-invasive optical way. In plasma dielectric via etching, the bombardment of reactive ions on exposed conductor patterns may induce electrical current. Induced electrical charge can further flow down to device level, and accumulated charges in the consecutive plasma processes during back-end metallization can create plasma induced charging damage to shift the threshold voltage of device. As a preliminary research for the hypothesis, we performed two phases experiment to measure the plasma induced current in etch environmental condition. We fabricated electrical test circuits to convert induced current to flickering frequency of LED output, and the flickering frequency was measured by high speed optical plasma monitoring system (OPMS) in 10 kHz. Current-frequency calibration was done in offline by applying stepwise current increase while LED flickering was measured. Once the performance of the test circuits was evaluated, a metal pad for collecting ion bombardment during plasma etch condition was placed inside etch chamber, and the LED output frequency was measured in real-time. It was successful to acquire high speed optical emission data acquisition in 10 kHz. Offline measurement with the test circuitry was satisfactory, and we are continuously investigating the potential of real-time in-situ plasma induce current measurement via OPMS.

  • PDF

Role of CH2F2 and N-2 Flow Rates on the Etch Characteristics of Dielectric Hard-mask Layer to Extreme Ultra-violet Resist Pattern in CH2F2/N2/Ar Capacitively Coupled Plasmas

  • Kwon, B.S.;Lee, J.H.;Lee, N.E.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.210-210
    • /
    • 2011
  • The effects of CH2F2 and N2 gas flow rates on the etch selectivity of silicon nitride (Si3N4) layers to extreme ultra-violet (EUV) resist and the variation of the line edge roughness (LER) of the EUV resist and Si3N4 pattern were investigated during etching of a Si3N4/EUV resist structure in dual-frequency superimposed CH2F2/N2/Ar capacitive coupled plasmas (DFS-CCP). The flow rates of CH2F2 and N2 gases played a critical role in determining the process window for ultra-high etch selectivity of Si3N4/EUV resist due to disproportionate changes in the degree of polymerization on the Si3N4 and EUV resist surfaces. Increasing the CH2F2 flow rate resulted in a smaller steady state CHxFy thickness on the Si3N4 and, in turn, enhanced the Si3N4 etch rate due to enhanced SiF4 formation, while a CHxFy layer was deposited on the EUV resist surface protecting the resist under certain N2 flow conditions. The LER values of the etched resist tended to increase at higher CH2F2 flow rates compared to the lower CH2F2 flow rates that resulted from the increased degree of polymerization.

  • PDF

Low Cost Via-Hole Filling Process Using Powder and Solder (파우더와 솔더를 이용한 저비용 비아홀 채움 공정)

  • Hong, Pyo-Hwan;Kong, Dae-Young;Nam, Jae-Woo;Lee, Jong-Hyun;Cho, Chan-Seob;Kim, Bonghwan
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • This study proposed a noble process to fabricate TSV (Through Silicon Via) structure which has lower cost, shorter production time, and more simple fabrication process than plating method. In order to produce the via holes, the Si wafer was etched by a DRIE (Deep Reactive Ion Etching) process. The via hole was $100{\mu}m$ in diameter and $400{\mu}m$ in depth. A dielectric layer of $SiO_2$ was formed by thermal oxidation on the front side wafer and via hole side wall. An adhesion layer of Ti and a seed layer of Au were deposited. Soldering process was applied to fill the via holes with solder paste and metal powder. When the solder paste was used as via hole metal line, sintering state and electrical properties were excellent. However, electrical connection was poor due to occurrence of many voids. In the case of metal powder, voids were reduced but sintering state and electrical properties were bad. We tried the via hole filling process by using mixing solder paste and metal powder. As a consequence, it was confirmed that mixing rate of solder paste (4) : metal powder (3) was excellent electrical characteristics.