Fabrication and characterization of WSi₂ nanocrystals memory device with SiO₂ / HfO₂ / Al₂O₃ tunnel layer

Hyo Jun Lee¹, Dong Uk Lee¹, Eun Kyu Kim¹*, Jung-woo Son², Won-Ju Cho²

¹Quantum-Function Research Lab. and Department of Physics, Hanyang University, Seoul 133-791 ²Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701

High-k dielectric materials such as HfO₂, ZrO₂ and Al₂O₃ increase gate capacitance and reduce gate leakage current in MOSFET structures. This behavior suggests that high-k materials will be promise candidates to substitute as a tunnel barrier. Furthermore, stack structure of low-k and high-k tunnel barrier named variable oxide thickness (VARIOT) is more efficient.[1] In this study, we fabricated the WSi₂ nanocrystals nonvolatile memory device with SiO₂/HfO₂/Al₂O₃ tunnel layer. The WSi₂ nano-floating gate capacitors were fabricated on p-type Si (100) wafers. After wafer cleaning, the phosphorus in-situ doped poly-Si layer with a thickness of 100 nm was deposited on isolated active region to confine source and drain. Then, on the gate region defined by using reactive ion etching, the barrier engineered multi-stack tunnel layers of SiO2/HfO2/Al2O3 (2 nm/1 nm/3 nm) were deposited the gate region on Si substrate by using atomic layer deposition. To fabricate WSi₂ nanocrystals, the ultrathin WSi2 film with a thickness of 3-4 nm was deposited on the multi-stack tunnel layer by using direct current magnetron sputtering system [2]. Subsequently, the first post annealing process was carried out at 900°C for 1 min by using rapid thermal annealing system in nitrogen gas ambient. The 15-nm-thick SiO₂ control layer was deposited by using ultra-high vacuum magnetron sputtering. For SiO₂ layer density, the second post annealing process was carried out at 900°C for 30 seconds by using rapid thermal annealing system in nitrogen gas ambient. The aluminum gate electrodes of 200-nm thickness were formed by thermal evaporation. The electrical properties of devices were measured by using a HP 4156A precision semiconductor parameter analyzer with HP 41501A pulse generator, an Agillent 81104A 80MHz pulse/pattern generator and an Agillent E5250A low leakage switch mainframe. We will discuss the electrical properties for application next generation non-volatile memory device.

[1] K. K. Likharev, Appl. Phys. Lett. 73, 2137 (1998).

[2] K. B. Seo, D. U. Lee, S. J. Han, E. K. Kim, H.-W. You, and W.-J. Cho, Curr. Appl. Phys, 10, e5 (2010).

Keywords: High-k dielectric, WSi2, memory, tunneling