• 제목/요약/키워드: Die bonding

검색결과 138건 처리시간 0.024초

플렉시블 전자기기 응용을 위한 미세 솔더 범프 접합부에 관한 연구 (Study on Joint of Micro Solder Bump for Application of Flexible Electronics)

  • 고용호;김민수;김택수;방정환;이창우
    • Journal of Welding and Joining
    • /
    • 제31권3호
    • /
    • pp.4-10
    • /
    • 2013
  • In electronic industry, the trend of future electronics will be flexible, bendable, wearable electronics. Until now, there is few study on bonding technology and reliability of bonding joint between chip with micro solder bump and flexible substrate. In this study, we investigated joint properties of Si chip with eutectic Sn-58Bi solder bump on Cu pillar bump bonded on flexible substrate finished with ENIG by flip chip process. After flip chip bonding, we observed microstructure of bump joint by SEM and then evaluated properties of bump joint by die shear test, thermal shock test, and bending test. After thermal shock test, we observed that crack initiated between $Cu_6Sn_5IMC$ and Sn-Bi solder and then propagated within Sn-Bi solder and/or interface between IMC and solder. On the other hands, We observed that fracture propated at interface between Ni3Sn4 IMC and solder and/or in solder matrix after bending test.

와이어 본더에서의 초저 루프 기술 (The Low Height Looping Technology for Multi-chip Package in Wire Bonder)

  • 곽병길;박영민;국성준
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.17-22
    • /
    • 2007
  • Recent new packages such as MCP(Multi-Chip Package), QDP(Quadratic Die Package) and DDP(Dual Die Package) have stack type configuration. This kind of multi-layer package is thicker than single layer package. So there is need for the low height looping technology in wirebonder to make these packages thinner. There is stiff zone above ball in wirebonder wire which is called HAZ(Heat Affect Zone). When making low height loop (below $80\;{\mu}m$) with traditional forward loop, stiff wire in HAZ(Heat Affected Zone) above ball is bended and weakened. So the traditional forward looping method cannot be applied to low height loop. SSB(stand-off stitch) wire bonding method was applied to many packages which require very low loops. The drawback of SSB method is making frequent errors at making ball, neck damage above ball on lead and the weakness of ball bonding on lead. The alternative looping method is BNL(ball neckless) looping technology which is already applied to some package(DDP, QDP). The advantage of this method is faster in bonding process and making little errors in wire bonding compared with SSB method. This paper presents the result of BNL looping technology applied in assembly house and several issues related to low loop height consistence and BNL zone weakness.

  • PDF

Driving Forces of Silver Nano-porous Sheet Die Bonding at 145 ℃ and 175 ℃ in the Air

  • YehRi Kim;Eunjin Jo;Dongjin Kim
    • 마이크로전자및패키징학회지
    • /
    • 제31권3호
    • /
    • pp.91-98
    • /
    • 2024
  • This study reveals the feasibility and effectiveness of sinter bonding using an Ag nano-porous sheet at the lowest "theoretically" possible temperature of 145 ℃. By uniform pressure of 10 MPa for bonding times of 5 min and 10 min at 145 and 175 ℃, we achieved bonding strengths exceeding approximately 20 MPa with a only 5 min of bonding time at 145 ℃. In particular, it is interesting to note that in the pressure sintering bonding process at 145 ℃, bonding times of 5 and 10 min had no significant difference in strength. Even with a bonding temperature of 175 ℃, the difference in average bonding strength between bonding times of 5 min (i.e., 37.6 MPa) and 10 min (i.e., 43.0 MPa) was only 5 MPa. The bonding strength was fundamentally attributed to the thickness of the Ag sintered neck in the Ag sintered layer. Microstructural analysis revealed that as the bonding temperature increased to 175 ℃, the fraction of CSL Σ3 boundaries within the Ag sintered layer increased, indicating greater coalescence of Ag particles. This study systematically investigated the mechanism of bonding strength in extremely low-temperature pressure Ag sinter bonding, considering the relationship between microstructures and mechanical behaviors.

칩 실장공정에 따른 Package on Package(PoP)용 하부 패키지의 Warpage 특성 (Warpage Characteristics of Bottom Packages for Package-on-Package(PoP) with Different Chip Mounting Processes)

  • 정동명;김민영;오태성
    • 마이크로전자및패키징학회지
    • /
    • 제20권3호
    • /
    • pp.63-69
    • /
    • 2013
  • Package on Package(PoP)용 하부 패키지에 대해 플립칩 본딩으로 칩을 기판에 실장한 패키지와 die attach film(DAF)을 사용하여 칩을 기판에 접착한 패키지의 warpage 특성을 비교하였다. 플립칩 본딩으로 칩을 기판에 실장한 패키지와 DAF를 사용하여 칩을 기판에 실장한 패키지는 솔더 리플로우 온도인 $260^{\circ}C$에서 각기 $57{\mu}m$$-102{\mu}m$의 warpage를 나타내었다. 상온에서 $260^{\circ}C$ 사이의 온도 범위에서 플립칩 실장한 패키지는 $-27{\sim}60{\mu}m$ 범위의 warpage를 나타내는 반면에, DAF 실장한 패키지는 $-50{\sim}-153{\mu}m$ 범위의 warpage를 나타내었다.

MEMS용 적층형 압전밸브의 제작 (Fabrication of MCA Valve For MEMS)

  • 김재민;윤재영;정귀상
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 춘계학술대회 논문집 반도체 재료 센서 박막재료 전자세라믹스
    • /
    • pp.129-132
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 sccm at a supplied voltage of 100 V with a 50 % duty cycle, maximum non-linearity was 2.24 % FS and leak rate was $3.03{\times}10^{-8}\;pa{\cdot}m^3/cm^2$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

  • PDF

적층형 압전밸브의 설계, 제작 및 특성 (Design, Fabrication and Characteristics of a MCA Valve)

  • 정귀상;김재민;윤석진;정순종;송재성
    • 센서학회지
    • /
    • 제13권3호
    • /
    • pp.230-235
    • /
    • 2004
  • This paper describes the design, fabrication and characteristics of a piezoelectric valve using MCA(Multilayer ceramic actuator). The MCA valve, which has the buckling effect, consists of three separate structures; MCA, a valve actuator die and an a seat die. The design of the actuator die was done by FEM modeling and displacement measurement, respectively. The valve seat die with 6 trenches was made, and the actuator die, which is driven to MCA under optimized conditions, was also fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the seat/actuator die structure. PDMS sealing pad was fabricated to minimize a leak-rate. It was also bonded to seat die and SUS package. The MCA valve shows a flow rate of 9.13 seem at a supplied voltage of 100 V with a 50% duty cycle, maximum non-linearity was 2.24% FS and leak rate was $3.03{\times}10^{-8}pa{\codt}m^{3}/cm^{2}$. Therefore, the fabricated MCA valve is suitable for a variety of flow control equipment, a medical bio-system, automobile and air transportation industry.

적층형 세라믹 엑추에이터를 이용한 MEMS용 압전밸브의 제작 및 특성 (Fabrication and Characteristics of a Piezoelectric Valve for MEMS using a Multilayer Ceramic Actuator)

  • 정귀상;김재민;윤석진
    • 한국전기전자재료학회논문지
    • /
    • 제17권5호
    • /
    • pp.515-520
    • /
    • 2004
  • We report on the development of a Piezoelectric valvc that is designed to have a high reliability for fluid control systems, such as mass flow control, transportation and chemical analysis. The valve was fabricated using a MCA(multilayer ceramic actuator), which has a low consumption power, high resolution and accurate control. The fabricated valve is composed of MCA, a valve actuator die and an seat die. The design of the actuator dic was done by FEM(finite element method) modeling, respectively. And, the valve seat die with 6 trenches was made. and the actuator die, which possible to optimize control to MCA, was fabricated. After Si-wafer direct bonding between the seat die and the actuator die, MCA was also anodic bonded to the scat/actuator die structure. PDMS(poly dimethylsiloxane) sealing pad was fabricated to minimize a leak-rate. It was also bonded to scat die and stainless steel package. The flow rate was 9.13 sccm at a supplied voltage of 100 V with a 50 % duty ratio and non-linearity was 2.24 % FS. From these results, the fabricated MCA valve is suitable for a variety of flow control equipments, a medical bio-system, semiconductor fabrication process, automobile and air transportation industry with low cost, batch recess and mass production.

다이접착필름용 조성물의 탄성 계수 및 경화 특성 최적화 (Optimization of Elastic Modulus and Cure Characteristics of Composition for Die Attach Film)

  • 성충현
    • 한국산학기술학회논문지
    • /
    • 제20권4호
    • /
    • pp.503-509
    • /
    • 2019
  • 더욱 작고 얇고 빠르며, 많은 기능을 가진 모바일 기기에 대한 요구가 그 어느 때보다 높다. 이에 대한 기술적 대응의 하나로 여러 개의 칩을 적층하는 Stacked Chip Scale Package(SCSP)가 어셈블리 업계에서 사용되고 있다. 다수의 칩을 접착하는 유기접착제로는 필름형 접착제인 die attach film(DAF)가 사용된다. 칩과 유기기판의 접착의 경우, DAF가 기판의 단차를 채우기 위해서는 고온에서 높은 유동성이 요구된다. 또한 와이어 사이를 채우면서 고용량 메모리와 같이 동일한 크기의 칩을 접착하는 DAF의 경우에도, 본딩 온도에서 높은 유동성이 요구된다. 본 연구에서는 DAF의 주요 원재료 3성분에 대한 혼합물 설계 실험계획법을 통하여 고온에서 낮은 탄성계수를 갖도록 최적화하고, 이에 따른 점착 특성 및 경화 특성을 평가하였다. 3성분은 아크릴 고분자(SG-P3)와 연화점이 다른 두 개의 고상에폭시 수지(YD011과 YDCN500-1P)이다. 실험계획법 평가 결과에 따르면, 고온에서는 아크릴 고분자 SG-P3의 함량이 작을수록 탄성계수가 작은 값을 나타내었다. $100^{\circ}C$에서의 탄성계수는 SG-P3의 함량이 20% 감소한 경우, 1.0 MPa에서 0.2 MPa 수준으로 감소하였다. 반면, 상온에서의 탄성계수는 연화점이 높은 에폭시 YD011에 의해 크게 좌우되었다. 최적 처방은 UV 다이싱 테이프를 적용시 98.4% 수준의 비교적 양호한 다이픽업 성능을 나타냈다. 유리칩을 실리콘 기판에 부착하고 에폭시를 1단계 경화시킨 경우, 크랙이 발생하였으나, 아민 경화 촉진제의 함량 증가와 2단계 경화를 통하여 크랙의 발생을 최소화할 수 있었다. 이미다졸계 촉진제가 아민계 촉진제에 비해 효과가 우수하였다.

레이저 열-압착 본딩 시스템의 Lateral Force 감소를 위한 유연 힌지의 설계 (Design of flexure hinge to reduce lateral force of laser assisted thermo-compression bonding system)

  • 이동원;하석재;박정연;윤길상
    • Design & Manufacturing
    • /
    • 제14권3호
    • /
    • pp.23-30
    • /
    • 2020
  • Laser Assisted Thermo-Compression Bonding (LATCB) has been proposed to improve the "chip tilt due to the difference in solder bump height" that occurs during the conventional semiconductor chip bonding process. The bonding module of the LATCB system has used a piezoelectric actuator to control the inclination of the compression jig on a micro scale, and the piezoelectric actuator has been directly coupled to the compression jig to minimize the assembly tolerance of the compression jig. However, this structure generates a lateral force in the piezoelectric actuator when the compression jig is tilted, and the stacked piezoelectric element vulnerable to the lateral force has a risk of failure. In this paper, the optimal design of the flexure hinge was performed to minimize the lateral force generated in the piezoelectric actuator when the compression jig is tilted by using the displacement difference of the piezoelectric actuator in the bonding module for LATCB. The design variables of the flexure hinge were defined as the hinge height, the minimum diameter, and the notch radius. And the effect of the change of each variable on the stress generated in the flexible hinge and the lateral force acting on the piezoelectric actuator was analyzed. Also, optimization was carried out using commercial structural analysis software. As a result, when the displacement difference between the piezoelectric actuators is the maximum (90um), the maximum stress generated in the flexible hinge is 11.5% of the elastic limit of the hinge material, and the lateral force acting on the piezoelectric actuator is less than 1N.