• Title/Summary/Keyword: Design-dependent load

Search Result 184, Processing Time 0.03 seconds

Ground Response Curve for Ground Movement Analysis of Tunnel (지반응답곡선을 이용한 터널의 지반거동 분석)

  • Lee, Song;Ahn, Sung-Hak;Ahn, Tae-Hun;Kong, Sung-Suk
    • Journal of the Korean Society for Railway
    • /
    • v.5 no.4
    • /
    • pp.244-252
    • /
    • 2002
  • We must notice ground movement by excavation for reasonable tunnel designs. The convergence confinement method is an attempt to evaluate tunnel stability conditions by means of a mathematical model and a ground response curve. In this study, the convergence confinement method by numerical model was examined. This method don't need the basic assumptions for a mathematical model of circular tunnel shape, and hydrostatic in situ stress. Also modified ground response curve that is calculated after installing the support, is suggested, which informs us the ground movement mechanism. The ground response curve and the support reaction curve are mutually dependent. Especially the support reaction curve depends upon the ground response curve. The mechanism of tunnel must be analyzed by the interaction between support and ground. Consequently the stability of tunnel must be qualitatively investigated by a ground response curve and quantitatively adjudged by a numerical analysis for the reasonable design of tunnel.

A Seismic Design of RC Underground Subway Structure (지중 RC 도시지하철고 구조물의 내진설계)

  • Jeong, Jae-Pyoung;Im, Tong-Won;Lee, Seong-Lo;Kim, Woo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.357-362
    • /
    • 2000
  • This Paper presents dynamic analysis of underground R/C Subway Structure, subjected to seismic actions. Earthquakes brought serious damage to RC subway Structure. Foe studying the collapse mechanism of underground RC Subway, seismic of a subway station is simulated in using FEM program ASP2000 of two-dimension based on the path dependent RC elastic model, soil foundation and interfacial models. The shear failure of intermediate vertical columns is founds to be the major cause of the structural collapse. According to FEM simulation of the failure mechanism, it is considered that the RC column would lose axial load carrying capacity after the occurrence of the localized diagonal shear cracks , and sudden failure of the outer frame would be followed. Specially, the shear stress in the middle slab reaches maximum shear capacity. So, the Structure would fail in the middle slab as a result of erasing the vertical ground motion computation.

  • PDF

A Study for NOx Discharge Characteristics of Diesel Engines (디젤엔진의 NOx 배출 특성에 관한 연구)

  • 남정길;최주열
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.3
    • /
    • pp.373-380
    • /
    • 2003
  • According to the NOx regulations of annex Vi to IMO MARPOL 73/78, all diesel engines with a power output of more than 130 kW should be delivered so as to comply with the IMO speed dependent NOx limit. It is inevitable to adopt this regulations for marine engines Therefore, most of diesel engines which are being currently built should be designed and tested in accordance with the NOx technical code In this study, NOx concentrations of 4 type engines were measured with portable NOx measuring system recommended by ISO-8178. As the results NOx concentrations of each engine by variation of engine speed and engine load were visualized Also these results can be utilized for the basic design and development of diesel engine for NOx reduction.

Durability Analysis of Automotive Seat Frame by Shape (자동차 시트 프레임의 형상별 내구성 해석에 관한 연구)

  • Choi, Kyekwang;Cho, Jaeung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.3
    • /
    • pp.14-21
    • /
    • 2020
  • The automotive seat appropriately absorbs the vibrations or shocks transmitted through a vehicle when it is in operation so as to provide a comfortable ride for passengers. In this study, the structural strength and durability of each model were investigated using structural analysis. The natural and critical frequencies at the seat were analyzed through vibration analysis. Through the results of this study on automotive seat frame models, the durability against the load and vibration is shown to be dependent on the configuration of the model.

Development of a Mechanical Crack Model to Analyze Deformation and Failure Mechanism of Rock (암석의 변형 및 파괴거동의 해석을 위한 균열모형 개발에 관한 연구)

    • Tunnel and Underground Space
    • /
    • v.8 no.2
    • /
    • pp.96-106
    • /
    • 1998
  • Rock contains discontinuities at all scales. These discontinuities make rock behave in a complex way. This paper discusses a new approach to underground design based on the theory of rock fracture mechanics. The mechanism of deformation and failure of coal was studied by observing the distributions of length, orientation and spacing of the pre-existing as well as stress-induced cracks. Different types of crack information. The crack information is dependent on the scale used. The cracks propagate along the intersections of the pre-existing cracks, and both extensile and shear crack growth occur depending on the direction of the load relative to the bedding planes. An analytical model that takes into account both shear and extensile crack growth was developed to predict the nonlinear stress-strain behavior of coal including strain-hardening and strain-softening.

  • PDF

Research on Ground Temperature Restoration Characteristics of Large-Scale Ground Source Heat Pump System

  • Zhang, Xu;Liu, Jun;Gao, Jun;Li, Kuishan
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.4
    • /
    • pp.109-116
    • /
    • 2008
  • Ground temperature restoration characteristics are the crucial factors to evaluate whether a ground source heat pump system can keep long time steady operation. They are mainly dependent on soil thermal properties, layout of pile group, operation/shutoff ratio, cooling/heating load, thermal imbalance ratio and so on. On the one hand, several types of vertical pile foundation heat exchangers are intercompared to determine the most efficient one by performance test and numerical method. On the other hand, according to the layout of pile group of a practical engineering and running conditions of a GSHP system in Shanghai, the temperature distribution during a period of five years is numerically studied. The numerical results are analyzed and are used to provide some guidance for the design of large-scale GSHP system.

The Analysis of operational characteristic of superconducting current generator by computer simulation (시뮬레이션을 통한 정류형 초전도 전류발생장치의 동작특성해석)

  • Chu, Yong;Joo, Min-Seok;Hong, Jung-Bae;Ko, Tae-Kuk
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.95-97
    • /
    • 1995
  • A superconducting current generator, or a superconducting rectifier(SCR) is used as a current source to energize a superconducting magnets in SMES, MRI. We selected a full-wave SCR among various SCR models and analyzed its operational characteristics by computer simulation. In process of pumping the current, the improvement of performance is dependent on how much bigger the open resistance of the switch is in comparison to load coil impedance when one of two switches become active. Faster transfer can he seen in resistive commutation mode by shortening the time elapsed for the resistance to arrive at certain level from zero state. Although recovery time for the switch has no direct effect on current pumping, optimal switch design is needed to increasing operational frequency.

  • PDF

A geometrically nonlinear stability analysis of sandwich annular plates with cellular core

  • Ridha A., Ahmed;Kareem Mohsen, Raheef;Nadhim M., Faleh;Raad M., Fenjan
    • Steel and Composite Structures
    • /
    • v.45 no.5
    • /
    • pp.767-774
    • /
    • 2022
  • A geometrically nonlinear stability analysis of sandwich annular plates with cellular core and particle-reinforced composite layers has been performed in the present research. The particles are powders of graphene oxide (GOP) which act as nanoscale filler of epoxy matrix. To this regard, Halpin-Tsai micromechanical scheme has been used to define the material properties of the layers. A square shaped core has been considered for which the material properties have been defined based on the relative density concept. Large deflection theory of thin shells has been selected to develop the complete formulation of sandwich plate. The geometrically nonlinear stability analysis of sandwich annular plates has been carried out by indicating that the buckling load is dependent on particle amount, thickness of layer and core relative density.

Analytical System Development for Reinforced Tall Buildings with Construction Sequence (시공단계에 따른 철근콘크리트 고층건물의 해석시스템 개발)

  • Lee, Tae-Gyu
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.9
    • /
    • pp.410-417
    • /
    • 2013
  • Long-term behavior analysis considering construction sequence should be performed in the design and the actual construction of reinforced tall buildings. Most of the analytical studies on this subject, however, has not been applied directly to the structural design and the construction caused by the simple approach. As the axial force redistribution of shores and columns is time-dependent, the actual construction sequence with the placement of concrete, form removal, reshoring, shore removal, and the additional load application is very important. Object-oriented analysis program considering construction sequence, especially time-dependent deformation in early days, is developed. This system is composed of input module, database module, database store module, analysis module, and result generation module. Linkage interface between the central database and each of the related module is implemented by the visual c# concept. Graphic user interface and the relational database table are supported for user's convenience.

Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect

  • Chaht, Fouzia Larbi;Kaci, Abdelhakim;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Beg, O. Anwar;Mahmoud, S.R.
    • Steel and Composite Structures
    • /
    • v.18 no.2
    • /
    • pp.425-442
    • /
    • 2015
  • This paper addresses theoretically the bending and buckling behaviors of size-dependent nanobeams made of functionally graded materials (FGMs) including the thickness stretching effect. The size-dependent FGM nanobeam is investigated on the basis of the nonlocal continuum model. The nonlocal elastic behavior is described by the differential constitutive model of Eringen, which enables the present model to become effective in the analysis and design of nanostructures. The present model incorporates the length scale parameter (nonlocal parameter) which can capture the small scale effect, and furthermore accounts for both shear deformation and thickness stretching effects by virtue of a sinusoidal variation of all displacements through the thickness without using shear correction factor. The material properties of FGM nanobeams are assumed to vary through the thickness according to a power law. The governing equations and the related boundary conditions are derived using the principal of minimum total potential energy. A Navier-type solution is developed for simply-supported boundary conditions, and exact expressions are proposed for the deflections and the buckling load. The effects of nonlocal parameter, aspect ratio and various material compositions on the static and stability responses of the FGM nanobeam are discussed in detail. The study is relevant to nanotechnology deployment in for example aircraft structures.