Browse > Article
http://dx.doi.org/10.12989/scs.2022.45.5.767

A geometrically nonlinear stability analysis of sandwich annular plates with cellular core  

Ridha A., Ahmed (Al-Mustansiriah University, Engineering Collage)
Kareem Mohsen, Raheef (Ashur University College)
Nadhim M., Faleh (Al-Mustansiriah University, Engineering Collage)
Raad M., Fenjan (Al-Mustansiriah University, Engineering Collage)
Publication Information
Steel and Composite Structures / v.45, no.5, 2022 , pp. 767-774 More about this Journal
Abstract
A geometrically nonlinear stability analysis of sandwich annular plates with cellular core and particle-reinforced composite layers has been performed in the present research. The particles are powders of graphene oxide (GOP) which act as nanoscale filler of epoxy matrix. To this regard, Halpin-Tsai micromechanical scheme has been used to define the material properties of the layers. A square shaped core has been considered for which the material properties have been defined based on the relative density concept. Large deflection theory of thin shells has been selected to develop the complete formulation of sandwich plate. The geometrically nonlinear stability analysis of sandwich annular plates has been carried out by indicating that the buckling load is dependent on particle amount, thickness of layer and core relative density.
Keywords
composite; design; nonlinear stability; numerical; sandwich plate; steel;
Citations & Related Records
Times Cited By KSCI : 12  (Citation Analysis)
연도 인용수 순위
1 Ahmed, R.A., Al-Toki, M.H., Faleh, N.M. and Fenjan, R.M. (2022), "Nonlinear stability of higher-order porous metal foam curved panels with stiffeners", Transport Porous Media, 142(1), 249-264. https://doi.org/10.1007/s11242-021-01691-2.   DOI
2 Afshari, B.M., Mirjavadi, S.S. and Barati, M.R. (2022). "Investigating nonlinear static behavior of hyperelastic plates using three-parameter hyperelastic model", Adv. Concrete Construct., 13(5), 377-384. https://doi.org/10.12989/acc.2022.13.5.377.   DOI
3 Ahankari, S.S and Kar, K.K. (2010), "Hysteresis measurements and dynamic mechanical characterization of functionally graded natural rubber-carbon black composites", Polymer Eng. Sci., 50(5), 871-877. https://doi.org/10.1002/pen.21601.   DOI
4 Al-Maliki, A.F., Faleh, N.M. and Alasadi, A.A. (2019), "Finite element formulation and vibration of nonlocal refined metal foam beams with symmetric and non-symmetric porosities", Struct. Monit. Maint., 6(2), 147-159. https://doi.org/10.12989/smm.2019.6.2.147.   DOI
5 Al-Toki, M.H., Ali, H.A., Ahmed, R.A., Faleh, N.M. and Fenjan, R.M. (2022), "A numerical study on vibration behavior of fiber-reinforced composite panels in thermal environments", Struct. Eng. Mech., 82(6), 691-699. https://doi.org/10.12989/sem.2022.82.6.691.   DOI
6 Barati, M.R. and Shahverdi, H. (2017a), "Dynamic modeling and vibration analysis of double-layered multi-phase porous nanocrystalline silicon nanoplate systems", Europ. J. Mech.-A/Solids, 66, 256-268. https://doi.org/10.1016/j.euromechsol.2017.07.010.   DOI
7 Barati, M.R. and Shahverdi, H. (2017b), "Frequency analysis of porous nano-mechanical mass sensors made of multi-phase nanocrystalline silicon materials", Mater. Res. Express, 4(7), 075019. https://doi.org/10.1088/2053-1591/aa7ac2.   DOI
8 Barati, M.R. and Shahverdi, H. (2022), "Vibration frequencies of meta-material plates based on the numerical calibration of shape factor for various cell patterns", Waves Random Complex Media, 1-19. https://doi.org/10.1080/17455030.2022.2046300.   DOI
9 Chikh, A., Bakora, A., Heireche, H., Houari, M.S.A., Tounsi, A. and Bedia, E.A. (2016), "Thermo-mechanical postbuckling of symmetric S-FGM plates resting on Pasternak elastic foundations using hyperbolic shear deformation theory", Struct. Eng. Mech., 57(4), 617-639. https://doi.org/10.12989/sem.2016.57.4.617.   DOI
10 Du, H., Gao, H.J. and Dai Pang, S. (2016), "Improvement in concrete resistance against water and chloride ingress by adding graphene nanoplatelet", Cement Concrete Res., 83, 114-123. https://doi.org/10.1016/j.cemconres.2016.02.005.   DOI
11 Esawi, A.M.K., Morsi, K., Sayed, A., Taher, M. and Lanka, S. (2011), "The influence of carbon nanotube (CNT) morphology and diameter on the processing and properties of CNT-reinforced aluminium composites", Compos. Part A: Appl. Sci. Manufact., 42(3), 234-243.   DOI
12 Fang, M., Wang, K., Lu, H., Yang, Y. and Nutt, S. (2009), "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites", J. Mater. Chemistry, 19(38), 7098-7105. https://doi.org/10.1039/B908220D.   DOI
13 Guan, H., Huang, S., Ding, J., Tian, F., Xu, Q. and Zhao, J. (2020), "Chemical environment and magnetic moment effects on point defect formations in CoCrNi-based concentrated solid-solution alloys", Acta Materialia, 187, 122-134. https://doi.org/10.1016/j.actamat.2020.01.044.   DOI
14 Fenjan, R.M., Ahmed, R.A., Alasadi, A.A. and Faleh, N.M. (2019), "Nonlocal strain gradient thermal vibration analysis of double-coupled metal foam plate system with uniform and non-uniform porosities", Coup. Syst. Mech., 8(3), 247-257. https://doi.org/10.12989/csm.2019.8.3.247.   DOI
15 Feng, C., Kitipornchai, S. and Yang, J. (2017), "Nonlinear free vibration of functionally graded polymer composite beams reinforced with graphene nanoplatelets (GPLs)", Eng. Struc., 140, 110-119. https://doi.org/10.1016/j.engstruct.2017.02.052.   DOI
16 Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B. and Schulte, K. (2004), "Carbon nanotube-reinforced epoxy-composites: enhanced stiffness and fracture toughness at low nanotube content", Compos. Sci. Technol., 64(15), 2363-2371. https://doi.org/10.1016/j.compscitech.2004.04.002.   DOI
17 Guenaneche, B., Benyoucef, S., Tounsi, A. and Adda Bedia, E.A. (2019), "Improved analytical method for adhesive stresses in plated beam: Effect of shear deformation", Adv. Concrete Construct., 7(3), 151-166. https://doi.org/10.12989/acc.2019.7.3.151.   DOI
18 Hao, P., Wang, B., Du, K., Li, G., Tian, K., Sun, Y. and Ma, Y. (2016), "Imperfection-insensitive design of stiffened conical shells based on equivalent multiple perturbation load approach", Compos. Struct., 136, 405-413. https://doi.org/10.1016/j.compstruct.2015.10.022.   DOI
19 Hao, R.B., Lu, Z.Q., Ding, H. and Chen, L.Q. (2022), "A nonlinear vibration isolator supported on a flexible plate: analysis and experiment", Nonlinear Dyn., 108(2), 941-958. https://doi.org/10.1007/s11071-022-07243-7.   DOI
20 King, J.A., Klimek, D.R., Miskioglu, I. and Odegard, G.M. (2013), "Mechanical properties of graphene nanoplatelet/epoxy composites", J. Appl. Polymer Sci., 128(6), 4217-4223. https://doi.org/10.1002/app.38645.   DOI
21 Kitipornchai, S., Chen, D. and Yang, J. (2017), "Free vibration and elastic buckling of functionally graded porous beams reinforced by graphene platelets", Mater. Des., 116, 656-665. https://doi.org/10.1016/j.matdes.2016.12.061.   DOI
22 Lal, A. and Markad, K. (2018), "Deflection and stress behaviour of multi-walled carbon nanotube reinforced laminated composite beams", Comput. Concrete, 22(6), 501-514. https://doi.org/10.12989/cac.2018.22.6.501.   DOI
23 Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015), "Mechanical analysis of functionally graded carbon nanotube reinforced composites: a review", Compos. Struct., 120, 90-97. https://doi.org/10.1016/j.compstruct.2014.09.041.   DOI
24 Lin, F., Yang, C., Zeng, Q.H and Xiang, Y. (2018), "Morphological and mechanical properties of graphene-reinforced PMMA nanocomposites using a multiscale analysis", Comput. Mater. Sci., 150, 107-120.   DOI
25 Liu, W., Huang, F., Liao, Y., Zhang, J., Ren, G., Zhuang, Z. and Wang, C. (2008), "Treatment of CrVI-Containing Mg (OH) 2 Nanowaste", Angewandte Chemie, 120(30), 5701-5704. https://doi.org/10.1002/ange.200800172.   DOI
26 Metwally, I.M. (2014), "Three-dimensional finite element analysis of reinforced concrete slabs strengthened with epoxy-bonded steel plates", Adv. Concrete Construct., 2(2), 091. https://doi.org/10.12989/acc.2014.2.2.091.   DOI
27 Mohammed, A., Sanjayan, J.G., Nazari, A. and Al-Saadi, N.T.K. (2017), "Effects of graphene oxide in enhancing the performance of concrete exposed to high-temperature", Australian J. Civil Eng., 15(1), 61-71. https://doi.org/10.1080/14488353.2017.1372849.   DOI
28 Rezaiee-Pajand, M., Masoodi, A.R. and Mokhtari, M. (2018), "Static analysis of functionally graded non-prismatic sandwich beams", Adv. Comput. Des., 3(2), 165-190. https://doi.org/10.12989/acd.2018.3.2.165.   DOI
29 Nieto, A., Bisht, A., Lahiri, D., Zhang, C. and Agarwal, A. (2017), "Graphene reinforced metal and ceramic matrix composites: A review", Int. Mater. Rev., 62(5), 241-302.   DOI
30 Rafiee, M.A., Rafiee, J., Wang, Z., Song, H., Yu, Z.Z. and Koratkar, N. (2009), "Enhanced mechanical properties of nanocomposites at low graphene content", ACS Nano, 3(12), 3884-3890. https://doi.org/10.1021/nn9010472.   DOI
31 Shamsaei, E., de Souza, F.B., Yao, X., Benhelal, E., Akbari, A. and Duan, W. (2018), "Graphene-based nanosheets for stronger and more durable concrete: A review", Construct. Build. Mater., 183, 642-660. https://doi.org/10.1016/j.conbuildmat.2018.06.201.   DOI
32 Shen, H.S., Xiang, Y., Lin, F. and Hui, D. (2017), "Buckling and postbuckling of functionally graded graphene-reinforced composite laminated plates in thermal environments", Compos. Part B: Eng., 119, 67-78. https://doi.org/10.1016/j.compositesb.2017.03.020.   DOI
33 Song, M., Kitipornchai, S. and Yang, J. (2017), "Free and forced vibrations of functionally graded polymer composite plates reinforced with graphene nanoplatelets", Compos. Struct., 159, 579-588. https://doi.org/10.1016/j.compstruct.2016.09.070.   DOI
34 Wang, L. and Su, R.K.L. (2013), "A unified design procedure for preloaded rectangular RC columns strengthened with post-compressed plates", Adv. Concrete Construct., 1(2), 163. https://doi.org/10.12989/acc.2013.1.2.163.   DOI
35 Yang, B., Yang, J. and Kitipornchai, S. (2017), "Thermoelastic analysis of functionally graded graphene reinforced rectangular plates based on 3D elasticity", Meccanica, 52(10), 2275-2292. https://doi.org/10.1007/s11012-016-0579-8.   DOI
36 Wang, B., Zhu, S., Hao, P., Bi, X., Du, K., Chen, B. and Chao, Y.J. (2018), "Buckling of quasi-perfect cylindrical shell under axial compression: A combined experimental and numerical investigation", Int. J. Solids Struct., 130, 232-247. https://doi.org/10.1016/j.ijsolstr.2017.09.029.   DOI
37 Wu, Y., Zhao, Y., Han, X., Jiang, G., Shi, J., Liu, P. and Yamada, Y. (2021), "Ultra-fast growth of cuprate superconducting films: dual-phase liquid assisted epitaxy and strong flux pinning", Mater. Today Phys., 18, 100400. https://doi.org/10.1016/j.mtphys.2021.100400.   DOI
38 Xiong, Q.M., Chen, Z., Huang, J.T., Zhang, M., Song, H., Hou, X. F. and Feng, Z.J. (2020), "Preparation, structure and mechanical properties of Sialon ceramics by transition metal-catalyzed nitriding reaction", Rare Metals, 39(5), 589-596. https://doi.org/10.1007/s12598-020-01385-6.   DOI
39 Zaheer, M.M., Jafri, M.S. and Sharma, R. (2019), "Effect of diameter of MWCNT reinforcements on the mechanical properties of cement composites", Adv. Concrete Construct., 8(3), 207-215. https://doi.org/10.12989/acc.2019.8.3.207.   DOI
40 Zhang, L.W. (2017), "On the study of the effect of in-plane forces on the frequency parameters of CNT-reinforced composite skew plates", Compos. Struct., 160, 824-837. https://doi.org/10.1016/j.compstruct.2016.10.116.   DOI
41 Zhang, Z., Li, Y., Wu, H., Zhang, H., Wu, H., Jiang, S. and Chai, G. (2020), "Mechanical analysis of functionally graded graphene oxide-reinforced composite beams based on the first-order shear deformation theory", Mech. Adv. Mater. Struct., 27, 3-11. https://doi.org/10.1080/15376494.2018.1444216.   DOI