• Title/Summary/Keyword: Design solution

Search Result 4,862, Processing Time 0.034 seconds

A Behavior Test on a Frictional-Wedge-Type Vibration Isolation Device for Vibration Reduction of a Railway Track (열차 진동 저감을 위한 마찰쐐기형 방진장치의 거동 시험)

  • Lee, Chanyoung;Choi, Sanghyun;Lee, Yooin;Kwon, Segon;Koh, Yongsung;Ji, Yongsoo
    • Journal of the Society of Disaster Information
    • /
    • v.11 no.1
    • /
    • pp.45-54
    • /
    • 2015
  • In the case of railway facilities in cities such as a railway station or a bridge, the significance of design for reducing vibration and noise is getting more significant. The vibration control solution is in need especially for an elevated railway station to block vibration of a train and secondary noise effectively. Even though a vertical vibration isolation device is able to be applied effectively to railway facilities such as elevated railway stations which transfer vibration directly from a train to a structure, the development of the vertical device is much slower than a horizontal vibration isolation device. In this paper, a vibration isolation device using wedge type friction material which is currently developing to reduce train-induced vibration effectively is introduced and test results for verification of dynamic performance is also presented. The vibration test on a concrete structure equipped with the developed vibration isolation device is conducted through which the isolation performance and dynamic properties are verified and needs for improving the performance of the device is identified.

Development and Verification of OGSFLAC Simulator for Hydromechanical Coupled Analysis: Single-phase Fluid Flow Analysis (수리-역학적 복합거동 해석을 위한 OGSFLAC 시뮬레이터 개발 및 검증: 단상 유체 거동 해석)

  • Park, Chan-Hee;Kim, Taehyun;Park, Eui-Seob;Jung, Yong-Bok;Bang, Eun-Seok
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.468-479
    • /
    • 2019
  • It is essential to comprehend coupled hydro-mechanical behavior to utilize subsurface for the recent demand for underground space usage. In this study, we developed a new simulator for numerical simulation as a tool for researching to consider the various domestic field and subsurface conditions. To develop the new module, we combined OpenGeoSys, one of the scientific software package that handles fluid mechanics (H), thermodynamics (T), and rock and soil mechanics (M) in the subsurface with FLAC3D, one of the commercial software for geotechnical engineering problems reinforced. In this simulator development, we design OpenGeoSys as a master and FLAC3D as a slave via a file-based sequential coupling. We have chosen Terzaghi's consolidation problem related to single-phase fluid flow at a saturated condition as a benchmark model to verify the proposed module. The comparative results between the analytical solution and numerical analysis showed a good agreement.

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines (대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구)

  • Nguyen, Van Duc;Lee, Chang Woo
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.480-507
    • /
    • 2019
  • This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

Avoidance of Internal Resonances in Hemispherical Resonator Assemblies from Fused Quartz Connected by Indium Solder

  • Sarapuloff, Sergii A.;Rhee, Huinam;Park, Sang-Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.835-841
    • /
    • 2013
  • Modern solid-state gyroscopes (HRG) with hemispherical resonators from high-purity quartz glass and special surface superfinishing and ultrathin gold coating become the best instruments for precise-grade inertial reference units (IRU) targeting long-term space missions. Designing of these sensors could be a notable contribution into development of Korea as a space nation. In participial, 40mm diameter thin-shell resonator from high-purity fused quartz, fabricated as a single-piece with its supporting stem has been designed, machined, etched, tuned, tested, and delivered by STM Co. (ATS of Ukraine) several years ago; an extremely-high Q-factor (upto 10~20 millions) has been shown. Understanding of the best way how to match such a unique sensor with inner glass assembly of the gyro means how to use the high potential in a maximal extent; and this has become the urgent task. Inner quartz glass assembly has a very thin indium (In) layer soldered the resonator and its silica base (case), but effects of internal resonances between operational modal pair of the shell-cup and its side (parasitic) modes can notable degrade the potential of the sensor as a whole, instead of so low level of resonator's intrinsic losses. Unfortunately, there are special combinations of dimensions of the parts (so-called, "resonant sizes"), when intensive losses of energy occurs. The authors proposed to use the length of stem's fixture as an additional design parameter to avoid such cases. So-called, a cyclic scheme of finite element method (FEM) and ANSYS software were employed to estimate different combinations of gyro assembly parameters. This variant has no mismatches of numerical origin due to FEM's discrete mesh. The optimum length and dangerous "resonant lengths" have been found. The special attention has been paid to analyses of 3D effects in a cup-stem transient zone, including determination of a difference between the positions of geometrical Pole of the resonant hemisphere and of its "dynamical Pole", i.e., its real zone of oscillation node. Boundary effects between the shell (cup) and 3D short "beams" (inner and outer stems) have been ranged. The results of the numerical experiments have been compared with the classic model of a quasi-hemispherical shell band with inextensional midsurface, and the solution using Rayleigh's functions of the $1^{st}$ and $2^{nd}$ kinds. To guarantee the truth of the recommended sizes to a designer of the real device, the analytical and FEM results have been compared with experimental data for a party of real resonators. The consistency of the results obtained by different means has been shown with errors less than 5%. The results notably differ from the data published earlier by different researchers.

  • PDF

Polarization Precession Effects for Shear Elastic Waves in Rotated Solids

  • Sarapuloff, Sergii A.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.842-848
    • /
    • 2013
  • Developments of Solid-State Gyroscopy during last decades are impressive and were based on thin-walled shell resonators like HRG or CRG made from fused quartz or leuko-sapphire. However, a number of design choices for inertial-grade gyroscopes, which can be used for high-g applications and for mass- or middle-scale production, is still very limited. So, considerations of fundamental physical effects in solids that can be used for development of a miniature, completely solid-state, and lower-cost sensor look urgent. There is a variety of different types of bulk acoustic (elastic) waves (BAW) in anisotropic solids. Shear waves with different variants of their polarization have to be studied especially carefully, because shear sounds in glasses and crystals are sensitive to a turn of the solid as a whole, and, so, they can be used for development of gyroscopic sensors. For an isotropic medium (for a glass or a fine polycrystalline body), classic Lame's theorem (so-called, a general solution of Elasticity Theory or Green-Lame's representation) has been modified for enough general case: an elastic medium rotated about an arbitrary set of axes. Travelling, standing, and mixed shear waves propagating in an infinite isotopic medium (or between a pair of parallel reflecting surfaces) have been considered too. An analogy with classic Foucault's pendulum has been underlined for the effect of a turn of a polarizational plane (i.e., an integration effect for an input angular rate) due to a medium's turn about the axis of the wave propagation. These cases demonstrate a whole-angle regime of gyroscopic operation. Single-crystals are anisotropic media, and, therefore, to reflect influence of the crystal's rotation, classic Christoffel-Green's tensors have been modified. Cases of acoustic axes corresponding to equal velocities for a pair of the pure-transverse (shear) waves have of an evident applied interest. For such a special direction in a crystal, different polarizations of waves are possible, and the gyroscopic effect of "polarizational precession" can be observed like for a glass. Naturally, formation of a wave pattern in a massive elastic body is much more complex due to reflections from its boundaries. Some of these complexities can be eliminated. However, a non-homogeneity has a fundamental nature for any amorphous medium due to its thermodynamically-unstable micro-structure, having fluctuations of the rapidly-frozen liquid. For single-crystalline structures, blockness (walls of dislocations) plays a similar role. Physical nature and kinematic particularities of several typical "drifts" in polarizational BAW gyros (P-BAW) have been considered briefly too. They include irregular precessions ("polarizational beats") due to: non-homogeneity of mass density and elastic moduli, dissymmetry of intrinsic losses, and an angular mismatch between propagation and acoustic axes.

  • PDF

An Efficient Constraint Boundary Sampling Method for Sequential RBDO Using Kriging Surrogate Model (크리깅 대체모델을 이용한 순차적 신뢰성기반 최적설계를 위한 효율적인 제한조건경계 샘플링 기법)

  • Kim, Jihoon;Jang, Junyong;Kim, Shinyu;Lee, Tae Hee;Cho, Su-gil;Kim, Hyung Woo;Hong, Sup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.6
    • /
    • pp.587-593
    • /
    • 2016
  • Reliability-based design optimization (RBDO) requires a high computational cost owing to its reliability analysis. A surrogate model is introduced to reduce the computational cost in RBDO. The accuracy of the reliability depends on the accuracy of the surrogate model of constraint boundaries in the surrogated-model-based RBDO. In earlier researches, constraint boundary sampling (CBS) was proposed to approximate accurately the boundaries of constraints by locating sample points on the boundaries of constraints. However, because CBS uses sample points on all constraint boundaries, it creates superfluous sample points. In this paper, efficient constraint boundary sampling (ECBS) is proposed to enhance the efficiency of CBS. ECBS uses the statistical information of a kriging surrogate model to locate sample points on or near the RBDO solution. The efficiency of ECBS is verified by mathematical examples.

A Non-Uniform Convergence Tolerance Scheme for Enhancing the Branch-and-Bound Method (비균일 수렴허용오차 방법을 이용한 분지한계법 개선에 관한 연구)

  • Jung, Sang-Jin;Chen, Xi;Choi, Gyung-Hyun;Choi, Dong-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.4
    • /
    • pp.361-371
    • /
    • 2012
  • In order to improve the efficiency of the branch-and-bound method for mixed-discrete nonlinear programming, a nonuniform convergence tolerance scheme is proposed for the continuous subproblem optimizations. The suggested scheme assigns the convergence tolerances for each continuous subproblem optimization according to the maximum constraint violation obtained from the first iteration of each subproblem optimization in order to reduce the total number of function evaluations needed to reach the discrete optimal solution. The proposed tolerance scheme is integrated with five branching order options. The comparative performance test results using the ten combinations of the five branching orders and two convergence tolerance schemes show that the suggested non-uniform convergence tolerance scheme is obviously superior to the uniform one. The results also show that the branching order option using the minimum clearance difference method performed best among the five branching order options. Therefore, we recommend using the "minimum clearance difference method" for branching and the "non-uniform convergence tolerance scheme" for solving discrete optimization problems.

A Study on the Relationship between Justice Perception of Franchise and Trust, Switching Barriers of the Franchisee in the Barriers and Beauty Parlors Business (이.미용업에서의 프랜차이즈 공정성 지각이 신뢰와 전환장벽에 미치는 영향)

  • Kim, Kyeong Ran;Ryu, Hwang Gun;Oh, Chang Seok
    • The Korean Journal of Health Service Management
    • /
    • v.1 no.1
    • /
    • pp.75-89
    • /
    • 2007
  • The start point of a franchise system such as Lotteria was in 1979. Since 1990, the franchise systems in Korea have rapidly spread over all industry types. As 'Franchise Law' was enforced in 2002, the expansion of a franchise picked up its' speed. The barbers and beauty parlors business has the same expansion trend. However, there was no study about the franchise systems in the barbers and beauty parlors business. The purpose of this study was to find the goodness of fit of the structured equation model proposed and identify the significances of relationships in the variables of justice perceptions, trust, satisfactions, business performances, switching barriers, switching cost etc. This study tries to find a solution for a good development between franchisor and franchisee in the barbers and beauty parlors business in Korea. The theoretical considerations about justice of this study is limited in reciprocal relation justice and procedure justice. And it did make simplify for trust, satisfaction, business performance, switching barrier. And switching barrier did measure as dimension of switching coot. From October 26, 2005 to October 29, this study collected 250 survey questionnaires from the franchisees located in Seoul, Busan, Daegu, Ulsan, and Keoyng-Nam. In analyses of using SPSS Windows 11.0 and LISREL 8.14, this study used 208 cases because 48 cases did not response appropriately. Tn conclusions. reciprocal justice perception and procedure justice jointly determined trust. Secondly, reciprocal justice perception significantly determined satisfaction. Procedure justice perception negatively determined satisfaction, but this relationship was not significant. Thirdly, reciprocal justice perception positively influenced business performance, and procedure justice negatively influenced business performance, but the last relationship was not significant Fourthly, trust positively significantly influenced satisfaction and business performance. Fifthly, satisfaction positively influenced business performance and true determined switching barrier positively. This study shows following: firstly, a composition concept did make structural relationship and secondly, a reciprocal relation justice of a franchisor did appear as an important variable and it gives positive influence to trust, satisfactions, business performance, switching barriers of the franchisees.

  • PDF

Literature Review of Key Success Factors of Management Innovation Actions in Domestic - Focused on Six Sigma, TQM, Lean Six Sigma, ERP, TPM, BPR, Project Management, System Engineering - (국내 경영혁신 활동의 핵심 성공요인 문헌 연구 - 6시그마, TQM, 린 6시그마, ERP, TPM, BPR, Project Management, System Engineering 중심으로 -)

  • Mun, JeOk;Yoon, SungPil
    • Journal of Korean Society for Quality Management
    • /
    • v.44 no.3
    • /
    • pp.639-648
    • /
    • 2016
  • Purpose: Existing precedent studies include success factors of individual management innovation activities constantly. However, those studies have limitations about the common key success factors of individual management innovation activities. Methods: For this study, we investigate the key success factors using literature research of the most typical management innovation activities adopted and implemented by many companies in Korea, such as 6sigma, TQM, Lean 6sigma, ERP, TPM, BPR, Project Management, System Engineering. Factors emerging repeatedly was combined into common factors and inherent factors that are necessary for the success of individual management innovation activities are designated to essential factors. Results: 'Essential factors for Six Sigma' consist of 5 items. Black belt operating system, personnel management system linkage, the correct management of the data, perform improvement projects associated with financial performance financial result, linked to financial performance improvement project, project progress management. 'Essential factors of TQM' are arranged 4 items. Quality team's independence and role, goal-setting, Quality Information System, corporate's philosophy of quality first. 'Essential factors of Lean Six Sigma' are the selection of value stream which is based on the customer needs and the value creation and identify the project based on the selected value in the company. 'Essential factors of ERP' are investigated 6 items. Ongoing system maintenance and upgrades, the measurement and support of user satisfaction, the operating systems and the policies for the maintenance, IT infrastructure, change adaption condition monitoring, focusing on improving business performance. 'Essential factors for TPM' are arranged 4 items. Motivated and energetic Bottom-Up, CEO's recognition of the importance facility management, long-term perspective of necessity and ongoing patience. 'Essential factors for BPR' are the pursuit of change process and the staff's sense of crisis management. 'Essential factors for Project Management' are the strategy that reduce the risk management skills through risk management and the understanding and organized management for the project participant's needs. 'Essential factors for System Engineering' consist of 2 items. The first is the design for the best balanced system with pre-analysis about the compromise the cost, schedule and the performance. The second is the analysis of large problem into small problems which can solved. We have found the solution considering components of the interface through the systematic perspective. Conclusion: Common factors and essential factors presented in this study will properly help to introduce the individual management innovation activities for the each business sector and implement management innovation. After this study, new literature research that reflect new studies should accomplish steadily.

Macroscopic High-Temperature Structural Analysis Model for a Small-Scale PCHE Prototype (I) (소형 PCHE 에 대한 거시적 고온 구조 해석 모델링 (I))

  • Song, Kee-Nam;Lee, Heong-Yeon;Kim, Chan-Soo;Hong, Sung-Duk;Park, Hong-Yoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1499-1506
    • /
    • 2011
  • The IHX (intermediate heat exchanger) is a key component of nuclear hydrogen systems for the production of massive amounts hydrogen. The IHX transfers the $950^{\circ}C$ heat generated by the VHTR (very high temperature reactor) to a hydrogen production plant. The Korea Atomic Energy Research Institute established a small-scale gas loop to test the performance of key VHTR components and manufactured a small-scale PCHE (printed circuit heat exchanger) prototype, which is being considered as a candidate for the IHX, for testing in the small-scale gas loop. In this study, as a part of the high-temperature structural integrity evaluation of the small-scale PCHE prototype, we carried out high-temperature structural analysis modeling and macroscopic thermal and structural analysis for the small-scale PCHE prototype under the small-scale gas loop test conditions. This analysis serves as a precedent study to scheduled PCHE performance test in the small-scale gas loop. The results obtained in this study will be compared with the test results for the small-scale PCHE and then used to design the medium-scale PCHE prototype.