DOI QR코드

DOI QR Code

Optimization of the Unducted Auxiliary Ventilation for Large-Opening Underground Limestone Mines

대단면 지하 석회석 광산내 무풍관 국부통기 최적화 연구

  • Nguyen, Van Duc (Dong-A University, Energy and Mineral Resources Department) ;
  • Lee, Chang Woo (Dong-A University, Energy and Mineral Resources Department)
  • 응우엔반득 (동아대학교 공과대학 에너지.자원공학과) ;
  • 이창우 (동아대학교 공과대학 에너지.자원공학과)
  • Received : 2019.12.03
  • Accepted : 2019.12.19
  • Published : 2019.12.31

Abstract

This paper aims at optimizing the auxiliary ventilation system in large-opening limestone mines with unducted fans. An extensive CFD and also site study were carried out for optimization at the blind entries. The fan location, operating mode, and layout are the parameters for optimization. Since the jet stream discharged from the auxiliary fan is flowing faster than 15 m/s in most of the cases, the stream collides with floor, sides or roof and even with the jet stream generated from the other fan placed upstream. Then, it is likely to lose a large portion of its inertial force and then its ventilation efficiency drops considerably. Therefore, the optimal fan installation interval is defined in this study as an interval that maximizes the uninterrupted flowing distance of the jet stream, while the cross-sectional installation location can be optimized to minimize the energy loss due to possible collision with the entry sides. Consequently, the optimization of the fan location will improve ventilation efficiency and subsequently the energy cost. A number of different three-dimensional computational domains representing a full-scale underground space were developed for the CFD study. The velocity profiles and the CO concentrations were studied to design and optimize the auxiliary ventilation system without duct and at the same time mine site experiments were carried out for comparison purposes. The ultimate goal is to optimize the auxiliary ventilation system without tubing to provide a reliable, low-cost and efficient solution to maintain the clean and safe work environment in local large-opening underground limestone mines.

본 논문은 무풍관 선풍기를 이용한 대단면 갱내 국부통기시스템의 최적화를 목적으로 한다. 갱내 맹갱도 형태의 작업공간을 대상으로 일련의 CFD분석과 현장실험을 수행하였다. 선풍기 위치, 운전방식 및 배치가 최적화의 주요 대상변수이다. 국부선풍기에서 토출되는 제트류는 대부분의 경우, 풍속이 15m/s이상으로 고속이므로 토출 후 갱도 바닥, 내벽, 천정 그리고 다른 선풍기에서 토출되는 제트류와 충돌할 가능성이 있다. 따라서 충돌시 상당한 에너지 손실이 발생하므로 통기 효율이 급격히 저하될 수 있다. 본 논문에서 최적 선풍기 간격은 제트류가 충돌 없이 최대의 유동거리를 유지할 수 있는 거리로 정의하며, 반면 단면상의 최적 위치란 갱도내벽과의 충돌 가능성이 최소화된 위치로 정의하였다. 따라서 선풍기 설치위치의 최적화는 통기의 효율뿐만 아니라 에너지 비용 또한 최소화가 가능하다. 3차원 CFD분석을 위하여 다양한 갱내 맹갱도 작업공간을 가정하였다. 무풍관 국부통기의 설계 및 최적화를 위하여 풍속 및 CO농도 분포를 CFD분석하였으며 동시에 비교 목적으로 현장실험을 수행하였다. 본 논문의 궁극적인 목적은 풍관을 사용하기 않는 국부통기시스템을 최적화함으로써 대단면 맹갱도 작업공간에 고효율, 저비용 국부통기를 가능케하여 깨끗하고 안전한 작업환경을 확보하기 위함이다.

Keywords

References

  1. ANSYS, Inc., 2019, FLUENT User's Guide, Version 17.0, Canonsburg, PA: ANSYS, Inc.
  2. Colella, F., Rein, G., Verda, V., Borchiellini, R., 2011, Multiscale modeling of transient flows from fire and ventilation in long tunnels. Comput. Fluids 51, pp. 16-29. https://doi.org/10.1016/j.compfluid.2011.06.021
  3. Dunn, M, F. Kendorski, M. O. Rahim and J. Volkwein, 1983, Auxiliary Jet Fans and How to Get the Most Out of Them for Ventilating Large Room-And-Pillar Mines, Engineering Mining Journal, Dec., pp. 31-34.
  4. Gao, J., Uchino, K., Inoue, M., 2002, Simulation of thermal environmental conditions in heading face with forcing auxiliary ventilation-control of thermal environmental conditions in locally ventilated working place (1st report). Min. Mater. Process. Inst. Jpn. 118, pp. 9-16.
  5. Gosman, A., 1999, Developments in CFD for industrial and environmental applications in wind engineering. J. Wind Eng. Ind. Aerod. 81, pp. 21-39. https://doi.org/10.1016/S0167-6105(99)00007-0
  6. Grau III, R. H., Krog, R. B., Robertson, S. B, 2006, Maximizing the ventilation of large-opening mines, In Proceedings of the 11th US/North American Mine Ventilation Symp. University Park, PA pp. 53-59.
  7. Grau III, R. H., Mucho, T. P., Robertson, S. B., Smith, A. C., Garcia, F, 2002, Practical techniques to improve the air quality in underground stone mines, In the North American/Ninth US Mine Ventilation Symposium, Kingston, Ontario, Canada, pp. 123-129.
  8. Graul III, R. H., Krog, R, 2009, Using mine planning and other techniques to improve ventilation in large-opening mines. Mining Engineering, 61(2), 46.
  9. Haghighat, A. 2014, Analysis of a ventilation network in a multiple fans limestone mine. Missouri University of Science and Technology.
  10. Hargreaves, D., Lowndes, I.S., 2007, The computational modeling of the ventilation flows within a rapid development drivage. Tunn. Undergr. Sp. Tech. 22, pp. 150-160. https://doi.org/10.1016/j.tust.2006.06.002
  11. Hartman, H.L., Mutmansky J.M., 2002, Introductory Mining Engineering, Published by John Wiley & Sons Inc., Hoboken, New Jersey, Second Edition.
  12. Huang, Yuandong, and Zhonghua Zhou., 2013, A numerical study of airflow and pollutant dispersion inside an urban street canyon containing an elevated expressway, Environmental Modeling & Assessment 18.1, pp. 105-114. https://doi.org/10.1007/s10666-012-9332-4
  13. Krog, R., Grau III, R., 2006, Fan selection for large-opening mines: vane-axial or propeller fans-which to choose?, Proceedings of 11th US, In North American Mine Ventilation Symposium, Pennsylvania, USA, pp. 527-534.
  14. Lee, C. W., Nguyen, V.D., 2015, Development of a Low-Pressure Auxiliary Fan for Local Large-opening Limestone Mines. Journal of Korean Society for Rock Mechanics, Tunnel and Underground Space, 25(6), pp. 543-555. https://doi.org/10.7474/TUS.2015.25.6.543
  15. Migoya, E., Crespo, A., Hernandez, J., 2009, A simplified model of fires in road tunnels. Comparison with three-dimensional models and full-scale measurements. Tunn. Undergr. Sp. Tech. 24, pp. 37-52. https://doi.org/10.1016/j.tust.2008.01.006
  16. Montazeri, H., 2011, Experimental and numerical study on natural ventilation performance of various multi-opening wind catchers. Build. Environ. 46, pp. 370-378. https://doi.org/10.1016/j.buildenv.2010.07.031
  17. Parra, M., Villafruela, J., Castro, F., Mendez, C., 2006, Numerical and experimental analysis of different ventilation systems in deep mines. Build. Environ. 41, pp. 87-93. https://doi.org/10.1016/j.buildenv.2005.01.002
  18. Rafailidis, S., Schatzmann, M., 1995, Concentration Measurements with Different Roof Patterns in Street Canyon with Aspect Ratios B/H1/41/2 and B/H1/41. Universitat Hamburg, Meterologisches Institute.
  19. Road design guidelines, chapter 6, 2010, Ministry of Land, Infrastructure and Transport, Republic of Korea.
  20. Silvester, Stephen., 2002, The integration of CFD and VR methods to assist auxiliary ventilation practice. Ph.D. thesis, University of Nottingham.
  21. Torano, J., Torno, S., Menendez, M., Gent, M., Velasco, J., 2009. Models of methane behaviour in auxiliary ventilation of underground coal mining. Int. J. Coal Geol. 80, pp. 35-43. https://doi.org/10.1016/j.coal.2009.07.008
  22. Torno, S., Torano, J., Ulecia, M., Allende, C., 2013, Conventional and numerical models of blasting gas behaviour in auxiliary ventilation of mining headings. Tunn. Undergr. Sp. Tech. 34, pp. 73-81. https://doi.org/10.1016/j.tust.2012.11.003
  23. Wallace K.G., 2001, General Operational Characteristics and Industry Practices of Mine Ventilation Systems, Proceedings of the 7th International Mine Ventilation 149 Congress (Ed: S. Wasilewski), pp. 229-234, (Research and Development Centre for Electrical Engineering and Automation in Mining, Cracow, Poland.
  24. Zheng, Y., 2011, Diesel Particulate Matter Dispersion Analysis in Underground Metal/Nonmetal Mines Using Computational Fluid Dynamics. Missouri University of Science and Technology, Missouri.
  25. Zhongwei, W., Ting, R., 2013, Investigation of airflow and respirable dust flow behaviour above an underground bin. Powder Technol. 250, pp. 103-114. https://doi.org/10.1016/j.powtec.2013.08.045