• Title/Summary/Keyword: Design modifications

Search Result 449, Processing Time 0.03 seconds

A Geometric Constraint Solver for Parametric Modeling

  • Jae Yeol Lee;Kwangsoo Kim
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.4
    • /
    • pp.211-222
    • /
    • 1998
  • Parametric design is an important modeling paradigm in CAD/CAM applications, enabling efficient design modifications and variations. One of the major issues in parametric design is to develop a geometric constraint solver that can handle a large set of geometric configurations efficiently and robustly. In this appear, we propose a new approach to geometric constraint solving that employs a graph-based method to solve the ruler-and-compass constructible configurations and a numerical method to solve the ruler-and-compass non-constructible configurations, in a way that combines the advantages of both methods. The geometric constraint solving process consists of two phases: 1) planning phase and 2) execution phase. In the planning phase, a sequence of construction steps is generated by clustering the constrained geometric entities and reducing the constraint graph in sequence. in the execution phase, each construction step is evaluated to determine the geometric entities, using both approaches. By combining the advantages of the graph-based constructive approach with the universality of the numerical approach, the proposed approach can maximize the efficiency, robustness, and extensibility of geometric constraint solver.

  • PDF

A Study on the Inverse Shape Design of a Turbine Cascade Using the Permeable Boundary Condition and CFD (침투경계조건과 CFD를 이용한 터빈 역형상 설계에 관한 연구)

  • Lee, Eun-Seok;Seol, Woo-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.3116-3121
    • /
    • 2007
  • In this paper, the inverse shape design is introduced using the permeable wall boundary condition. Inverse shape design defines the blade shape for the prescribed Mach numbers or pressure distribution on its surface. It calculates the normal mass flux from the difference between the calculated and prescribed pressure at the surface. A new geometry can be achieved after applying the quasi one-dimensional continuity equation from the leading edge to the trailing edge. For validation of this method, two test cases are studied. The first test case of inverse shape design illustrates the cosine bump with a strong shock. After seven geometry modifications, the shock-free bump geometry can be obtained. The second example concerns the redesign of a transonic turbine cascade. The initial isentropic Mach distribution has a peak on the upper surface. The target isentropic Mach number distribution was imposed smoothly. The peak of Mach distribution has disappeared at the final geometry. This proposed inverse design method has proven to be an efficient and robust tool in turbomachinery design fields.

  • PDF

Database Construction Technique for the Development of Design-to-Certification Integrated System for Small Aircraft (소형항공기 인증-설계 통합시스템 개발을 위한 데이터베이스 구축 기법 연구)

  • Lee, Dongkyu;Yang, Sungwook;Lee, Sangchul
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.4
    • /
    • pp.13-18
    • /
    • 2008
  • Airworthiness is a term used to dictate whether an aircraft is worthy of safe flight. It is illegal in most countries to fly an aircraft without first obtaining an airworthiness certificate from the responsible government agency. For developing an aircraft, the design modifications and upgrades are considered a high financial risk proposal for most Program Managers(PMs). However Design-to-Certification Integrated System can be a great help in achieving a good design solution in an acceptable amount of time and flight test. In this paper, we present a method to construct database for the Development of Design-to-Certification Integrated System. By using this database, the human designer could manage and find the regulation and requirements related with his concern effectively.

  • PDF

A Study on Design of Underwater Acoustic Transducers Using the Electro-mechanical Coupling Analysis Code ATILA (전기-기계 연성해석 코드 ATILA를 이용한 수중 음향 트랜스듀서 설계)

  • Lee, Jeong-min;Cho, Yo-han;Kim, Jung-suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.10 s.103
    • /
    • pp.1211-1216
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes. materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that it requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tail mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

Blank Design in Sheet Metal forming Process Using the Rollback Method (롤백방법을 이용한 박판금속성형공정에서의 블랭크 설계)

  • 김종엽;김낙수;허만성
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.454-464
    • /
    • 1999
  • A new blank design method is proposed to predict the optimum initial blank shape in the sheet metal forming process. The rollback method for blank shape design takes the difference between the deformed blank contour and the target contour shape into account. the minimization object function R is proposed. Based on the method, a computer program composed of blank design module, FE-analysis module and mesh generation module is developed. The rollback method is applied to square cup, reentrant cross section, L-shaped cup drawing process with the flange of uniform size around its periphery to confirm its validity. The optimum initial blank shape is obtained from an arbitrary blank shape after several modifications. Good agreements are recognized between the numerical results and the published experimental results for initial blank shape and thickness strain distribution. It is concluded that the rollback method is an effective and convenient method for an optimum blank shape design.

  • PDF

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • v.17 no.4
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

Tonpilz Type Underwater Acoustic Transducers Design using Finite Element Method (유한요소법을 이용한 Tonpilz형 수중 음향 트랜스듀서 설계)

  • Cho, Yo-Han;Kim, Jung-Suk;Lee, Jeong-Min
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.247-250
    • /
    • 2005
  • Underwater acoustic transducers are widely used for SONAR application, whose important design parameters are shapes, materials, dimensions and supporting structures. Practical design method of transducers consists of manufacturing, experiments and modifications so that It requires much time and expenses. In this study, an analytical method was developed for the Tonpilz type transducers using the commercial finite element analysis code ATILA which can solve the electro-mechanical coupling Problems. A finite element model was established including the transducer elements such as ceramic stack, head mass, tall mass, tensile bolt, and molding layers. The proposed model was verified and modified by comparing the in-air and in-water test results of prototypes. The developed analysis method will be effectively used for the sensitivity analysis of design parameters in transducer design process.

  • PDF

A matrix displacement formulation for minimum weight design of frames

  • Orakdogen, Engin
    • Structural Engineering and Mechanics
    • /
    • v.14 no.4
    • /
    • pp.473-489
    • /
    • 2002
  • A static linear programming formulation for minimum weight design of frames that is based on a matrix displacement method is presented in this paper. According to elementary theory of plasticity, minimum weight design of frames can be carried out by using only the equilibrium equations, because the system is statically determinate when at an incipient collapse state. In the present formulation, a statically determinate released frame is defined by introducing hinges into the real frame and the bending moments in yield constraints are expressed in terms of unit hinge rotations and the external loads respectively, by utilizing the matrix displacement method. Conventional Simplex algorithm with some modifications is utilized for the solution of linear programming problem. As the formulation is based on matrix displacement method, it may be easily adopted to the weight optimization of frames with displacement and deformation limitations. Four illustrative examples are also given for comparing the results to those obtained in previous studies.

Optimum Shape Design of Engine Mounting Rubber Using a Parametric Approach (형상 파라미터화 방법을 이용한 엔진 마운트용 고무의 형상 최적화)

  • Kim, J.J.;Kim, H.Y.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.2
    • /
    • pp.33-41
    • /
    • 1994
  • The procedure to design the engine mount is briefly discussed and the optimum shape design process of engine mounting rubber using a parametric approach is suggested. An optimization code is developed to determine the shape to meet the stiffness requirements of engine mounts, coupled with the commercial nonlinear finite element program ABAQUS. A bush type engine mount used in a current passenger car is chosen for an application model. The shape from the result of the parameter optimization is determined as a final model with some modifications. The shape and stiffness of each optimization stage are shown and the stiffness of the optimized model along the principal direction is compared with the design specification of the current model. Finally, an overview of the current status and future works for the engine mount design are discussed.

  • PDF

EFFECT OF THE SURFACE MODIFICATIONS AND THE USE OF WASHER ON THE REVERSE TORQUE OF THE IMPLANT PROSTHETIC GOLD RETAINING SCREW

  • Lee, Jae-Hyuck;Jang, Kyung-Soo;Kim, Chang-Whe;Kim, Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.40 no.3
    • /
    • pp.246-261
    • /
    • 2002
  • The screw loosening is one of the complications that happen frequently in dental implant prostheses. The purpose of this study was to evaluate the changes of reverse/loosening (opening) torque of the screw according to the surface modifications by sandblasting and 24K gold electroplating as well as to determine the possibility of the clinical use of a washer in dental implant. The reverse torque of 4 experimental conditions(control, sandblasted, use of washers, electroplasted) was measured by digital torque gauge (Model MGT50Z, Mark-10 Corp., 458 West John Street Hicksville, NY 11801 USA). Electronic torque controller (Nobel Biocare DEA 020) was used in fastening the gold screws into abutment replicas. Mixed Linear Model Analysis method was used for statistical analysis. To examine the changes of screw thread surface, microphotographs were taken by Olympus PME-3 metallurgic microscope (Olympus Optical Co. Ltd., Tokyo, Japan). Within the limitations of this study, the following results were drawn: 1. The surface modifications of the gold screws and the use of a washer have significantly affected the reverse torque value compared to the control group (P<0.01). 2. Sandblasting and electroplating treatments demonstrated significantly higher reverse torque value than that of control group. 3. The use of a washer may be one of the useful clinical methods that prevent the screw loosening. However, further studies are necessary for the material selection and design of the washer.