• Title/Summary/Keyword: Delta derivation

Search Result 38, Processing Time 0.025 seconds

Range Kernel Orthogonality and Finite Operators

  • Mecheri, Salah;Abdelatif, Toualbia
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.1
    • /
    • pp.63-71
    • /
    • 2015
  • Let H be a separable infinite dimensional complex Hilbert space, and let $\mathcal{L}(H)$ denote the algebra of all bounded linear operators on H into itself. Let $A,B{\in}\mathcal{L}(H)$ we define the generalized derivation ${\delta}_{A,B}:\mathcal{L}(H){\mapsto}\mathcal{L}(H)$ by ${\delta}_{A,B}(X)=AX-XB$, we note ${\delta}_{A,A}={\delta}_A$. If the inequality ${\parallel}T-(AX-XA){\parallel}{\geq}{\parallel}T{\parallel}$ holds for all $X{\in}\mathcal{L}(H)$ and for all $T{\in}ker{\delta}_A$, then we say that the range of ${\delta}_A$ is orthogonal to the kernel of ${\delta}_A$ in the sense of Birkhoff. The operator $A{\in}\mathcal{L}(H)$ is said to be finite [22] if ${\parallel}I-(AX-XA){\parallel}{\geq}1(*)$ for all $X{\in}\mathcal{L}(H)$, where I is the identity operator. The well-known inequality (*), due to J. P. Williams [22] is the starting point of the topic of commutator approximation (a topic which has its roots in quantum theory [23]). In [16], the author showed that a paranormal operator is finite. In this paper we present some new classes of finite operators containing the class of paranormal operators and we prove that the range of a generalized derivation is orthogonal to its kernel for a large class of operators containing the class of normal operators.

Derivation of Some Activation Parameters (새로운 활성화 파라메터의 유도)

  • Lee, Ik-Choon
    • Journal of the Korean Chemical Society
    • /
    • v.12 no.2
    • /
    • pp.61-64
    • /
    • 1968
  • Compressibility and expansibility of activation, ${\Delta}K^{\neq}\;and\;{\Delta}E^{\neq},$ are defined with the use of general principles that an activation parameter is the difference in partial molar quantities of the parameter for the transition and initial state. Two related parameters, (${\partial}{\Delta}H^{\neq}/{\partial}P)_{\gamma}\;and\;{\Delta}W^{\neq}(=P{\Delta}V^{\neq}),$ are also derived. Simpler interpretation of the existing kinetic data are possible with these activation parameters, while other derivations lead to complicated expressions of no practical significance.

  • PDF

ON GENERALIZED (α, β)-DERIVATIONS AND COMMUTATIVITY IN PRIME RINGS

  • Jung, Yong-Soo;Park, Kyoo-Hong
    • Bulletin of the Korean Mathematical Society
    • /
    • v.43 no.1
    • /
    • pp.101-106
    • /
    • 2006
  • Let R be a prime ring and I a nonzero ideal of R. Let $\alpha,\;\nu,\;\tau\;R{\rightarrow}R$ be the endomorphisms and $\beta,\;\mu\;R{\rightarrow}R$ the automorphisms. If R admits a generalized $(\alpha,\;\beta)-derivation$ g associated with a nonzero $(\alpha,\;\beta)-derivation\;\delta$ such that $g([\mu(x),y])\;=\;[\nu/(x),y]\alpha,\;\tau$ for all x, y ${\in}I$, then R is commutative.

PRIMITIVE ORE EXTENSIONS OVER SPECIAL MATRIX RINGS

  • Jang Ho Chun;June Won Park
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.3
    • /
    • pp.557-562
    • /
    • 1996
  • We find an equivalent condition of $M_n(R)[x, \delta]$ to be primitive and characterize a special subring P of $M_n(R)$. Also, we find an equivalent condition of $P[x, \delta]$ to be primitive.

  • PDF

SOME RESULTS ON A DIFFERENTIAL POLYNOMIAL RING OVER A REDUCED RING

  • Han, Jun-Cheol;Kim, Hong-Kee;Lee, Yang
    • East Asian mathematical journal
    • /
    • v.16 no.1
    • /
    • pp.89-96
    • /
    • 2000
  • In this paper, a differential polynomial ring $R[x;\delta]$ of ring R with a derivation $\delta$ are investigated as follows: For a reduced ring R, a ring R is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring) if and only if the differential polynomial ring $R[x;\delta]$ is Baer(resp. quasi-Baer, p.q.-Baer, p.p.-ring).

  • PDF

PRIME RADICALS IN ORE EXTENSIONS

  • Han, Jun-Cheol
    • East Asian mathematical journal
    • /
    • v.18 no.2
    • /
    • pp.271-282
    • /
    • 2002
  • Let R be a ring with an endomorphism $\sigma$ and a derivation $\delta$. An ideal I of R is ($\sigma,\;\delta$)-ideal of R if $\sigma(I){\subseteq}I$ and $\delta(I){\subseteq}I$. An ideal P of R is a ($\sigma,\;\delta$)-prime ideal of R if P(${\neq}R$) is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideals I and J of R, $IJ{\subseteq}P$ implies that $I{\subseteq}P$ or $J{\subseteq}P$. An ideal Q of R is ($\sigma,\;\delta$)-semiprime ideal of R if Q is a ($\sigma,\;\delta$)-ideal and for ($\sigma,\;\delta$)-ideal I of R, $I^2{\subseteq}Q$ implies that $I{\subseteq}Q$. The ($\sigma,\;\delta$)-prime radical (resp. prime radical) is defined by the intersection of all ($\sigma,\;\delta$)-prime ideals (resp. prime ideals) of R and is denoted by $P_{(\sigma,\delta)}(R)$(resp. P(R)). In this paper, the following results are obtained: (1) $P_{(\sigma,\delta)}(R)$ is the smallest ($\sigma,\;\delta$)-semiprime ideal of R; (2) For every extended endomorphism $\bar{\sigma}$ of $\sigma$, the $\bar{\sigma}$-prime radical of an Ore extension $P(R[x;\sigma,\delta])$ is equal to $P_{\sigma,\delta}(R)[x;\sigma,\delta]$.

  • PDF

ON (α, δ)-SKEW ARMENDARIZ RINGS

  • MOUSSAVI A.;HASHEMI E.
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.2
    • /
    • pp.353-363
    • /
    • 2005
  • For a ring endomorphism $\alpha$ and an $\alpha$-derivation $\delta$, we introduce ($\alpha$, $\delta$)-skew Armendariz rings which are a generalization of $\alpha$-rigid rings and Armendariz rings, and investigate their properties. A semi prime left Goldie ring is $\alpha$-weak Armendariz if and only if it is $\alpha$-rigid. Moreover, we study on the relationship between the Baerness and p.p. property of a ring R and these of the skew polynomial ring R[x; $\alpha$, $\delta$] in case R is ($\alpha$, $\delta$)-skew Armendariz. As a consequence we obtain a generalization of [11], [14] and [16].

A NATURAL MAP ON AN ORE EXTENSION

  • Cho, Eun-Hee;Oh, Sei-Qwon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.1
    • /
    • pp.47-52
    • /
    • 2018
  • Let ${\delta}$ be a derivation in a noetherian integral domain A. It is shown that a natural map induces a homeomorphism between the spectrum of $A[z;{\delta}]$ and the Poisson spectrum of $A[z;{\delta}]_p$ such that its restriction to the primitive spectrum of $A[z;{\delta}]$ is also a homeomorphism onto the Poisson primitive spectrum of $A[z;{\delta}]_p$.

A Delta- and Attention-based Long Short-Term Memory (LSTM) Architecture model for Rainfall-runoff Modeling

  • Ahn, Kuk-Hyun;Yoon, Sunghyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.35-35
    • /
    • 2022
  • 최근에 딥 러닝(Deep learning) 기반의 많은 방법들이 수문학적 모형 및 예측에서 의미있는 결과를 보여주고 있지만 더 많은 연구가 요구되고 있다. 본 연구에서는 수자원의 가장 대표적인 모델링 구조인 강우유출의 관계의 규명에 대한 모형을 Long Short-Term Memory (LSTM) 기반의 변형 된 방법으로 제시하고자 한다. 구체적으로 본 연구에서는 반응변수인 유출량에 대한 직접적인 고려가 아니라 그의 1차 도함수 (First derivative)로 정의되는 Delta기반으로 모형을 구축하였다. 또한, Attention 메카니즘 기반의 모형을 사용함으로써 강우유출의 관계의 규명에 있어 정확성을 향상시키고자 하였다. 마지막으로 확률 기반의 예측를 생성하고 이에 대한 불확실성의 고려를 위하여 Denisty 기반의 모형을 포함시켰고 이를 통하여 Epistemic uncertainty와 Aleatory uncertainty에 대한 상대적 정량화를 수행하였다. 본 연구에서 제시되는 모형의 효용성 및 적용성을 평가하기 위하여 미국 전역에 위치하는 총 507개의 유역의 일별 데이터를 기반으로 모형을 평가하였다. 결과적으로 본 연구에서 제시한 모형이 기존의 대표적인 딥 러닝 기반의 모형인 LSTM 모형과 비교하였을 때 높은 정확성뿐만 아니라 불확실성의 표현과 정량화에 대한 유용한 것으로 확인되었다.

  • PDF