PRIME AND POISSON PRIME IDEALS IN SKEW EXTENSIONS DETERMINED BY DERIVATIONS

No-Ho Myung* and Sei-Qwon Oh**

ABSTRACT. Let R be a commutative noetherian algebra and let δ be a nonzero derivation. Here we determine the prime ideals of the skew polynomial algebra $R[z;\delta]$ and the Poisson prime ideals of $R[z;\delta]_p$

1. Introduction

It is very difficult to find prime ideals of $R[z; \alpha, \delta]$ and Poisson prime ideals of $R[z; \alpha, \delta]_p$ generally. Here we determine the prime ideals of $R[z; \delta]$ and the Poisson prime ideals of $R[z; \delta]_p$ in the case that R is a commutative noetherian algebra and δ is a nonzero derivation of R. If $\delta = 0$ then $R[z; \delta] = R[z] = R[z; \delta]_p$ and thus the prime ideals of R[z] are determined by commutative algebra theory. So we concentrate on the case $\delta \neq 0$.

Assume throughout the paper that the base field is the complex number field \mathbb{C} and that all algebras considered have unities.

DEFINITION 1.1. (1) Given an automorphism α on a \mathbb{C} -algebra R, a \mathbb{C} -linear map δ is said to be a (left) α -derivation on R if $\delta(ab) = \delta(a)b + \alpha(a)\delta(b)$ for all $a, b \in R$. For such pair (α, δ) , there exists a skew polynomial algebra $R[z; \alpha, \delta]$.

(2) A commutative \mathbb{C} -algebra S is said to be a *Poisson algebra* if there exists a bilinear product $\{-,-\}$ on S, called a *Poisson bracket*, such that $(S,\{-,-\})$ is a Lie algebra and $\{ab,c\}=a\{b,c\}+\{a,c\}b$ for all $a,b,c\in S$.

Received June 23, 2013; Accepted September 27, 2013.

²⁰¹⁰ Mathematics Subject Classification: Primary 17B63; Secondary 16S36.

Key words and phrases: Poisson polynomial algebra, skew polynomial algebra, prime ideal, Poisson prime ideal.

Correspondence should be addressed to Sei-Qwon Oh, sqoh@cnu.ac.kr.

^{**}Supported by a research fund of Chungnam National University.

We recall [5, 1.1]. A derivation α on S is said to be a *Poisson derivation* if

$$\alpha(\{a,b\}) = \{\alpha(a), b\} + \{a, \alpha(b)\}\$$

for all $a, b \in S$. Let α and δ be a Poisson derivation and a derivation on S respectively. The pair (α, δ) is said to be a *skew Poisson derivation* if

$$\delta(\{a,b\}) - \{\delta(a),b\} - \{a,\delta(b)\} = \alpha(a)\delta(b) - \delta(a)\alpha(b)$$

for all $a, b \in S$. In such case, the commutative polynomial algebra S[z] becomes a Poisson algebra with Poisson bracket $\{z, a\} = \alpha(a)z + \delta(a)$ for all $a \in S$ and is denoted by $S[z; \alpha, \delta]_p$. (In $[5, 1.1], \{z, a\}$ is defined by $\{z, a\} = -\alpha(a)z - \delta(a)$ for all $a \in S$.) If $\alpha = 0$ then we write $S[z; \delta]_p$ for $S[z; 0, \delta]_p$ and if $\delta = 0$ then we write $S[z; \alpha]_p$ for $S[z; \alpha, 0]_p$.

(3) An ideal I of a Poisson algebra S is said to be a *Poisson ideal* if $\{I,S\} \subseteq I$. A Poisson ideal P is said to be *Poisson prime* if, for all Poisson ideals I and J, $IJ \subseteq P$ implies $I \subseteq P$ or $J \subseteq P$. If S is noetherian then a Poisson prime ideal of S is a prime ideal by [3, Lemma 1.1(d)].

DEFINITION 1.2. (1) A derivation δ on an algebra R is said to be inner if there exists an element $a \in R$ such that $\delta(b) = ab - ba$ for all $b \in R$. If R is commutative then every nonzero derivation on R is not inner.

- (2) A derivation δ on a Poisson algebra S is said to be *inner* if there exists an element $a \in S$ such that δ is a Hamiltonian determined by a, that is, $\delta(b) = \{a, b\}$ for all $b \in S$. Note that every inner derivation on a Poisson algebra is a Poisson derivation and that if the Poisson bracket of S is trivial then every nonzero derivation on S is not inner.
- LEMMA 1.3. (1) Let δ be a nonzero derivation on a simple algebra R. If δ is not inner then the skew polynomial algebra $R[z;\delta]$ is simple.
- (2) Let δ be a nonzero derivation on a Poisson simple algebra S. If δ is not inner then the Poisson polynomial algebra $S[z;\delta]_p$ is Poisson simple.
- Proof. (1) Let I be a nonzero ideal of $R[z;\delta]$ and let g be a nonzero element of I such that the degree n of g is minimal among nonzero elements in I. Let J be the set of all leading coefficients of elements in I with degree n, together with zero. Then J is a nonzero ideal of R and thus $1_R \in J$. Hence we may assume that the leading coefficient of g is 1_R . If n = 0 then there is nothing to prove. Assume that n > 0 and set $g = z^n + az^{n-1} + (\dagger)$, where (\dagger) is a polynomial with degree less than n 1. For any $b \in R$, $gb bg \in I$ has degree less than n, and thus

gb = bg. Comparing the coefficients of z^{n-1} in gb and bg, we have that $\delta(b) = (-n^{-1}a)b - b(-n^{-1}a)$ for all $b \in R$. This is a contradiction since δ is not inner.

(2) Let I be a nonzero Poisson ideal of $S[z;\delta]$ and let g be a nonzero element of I such that the degree n of g is minimal among nonzero elements in I. Let J be the set of all leading coefficients of elements in I with degree n, together with zero. Then J is a nonzero Poisson ideal of S and thus $1_S \in J$. It follows that the leading coefficient of g is 1_S . If n=0 then there is nothing to prove. Assume that n>0 and set $g=z^n+az^{n-1}+(\dagger)$, where (\dagger) is a polynomial with degree less than n-1. For any $b \in S$, $\{g,b\} \in I$ has degree less than n, and thus $\{g,b\}=0$. Considering the coefficients of z^{n-1} in $\{g,b\}$, we have that $\delta(b)=\{-n^{-1}a,b\}$ for all $b \in S$. This is a contradiction since δ is not inner.

THEOREM 1.4. Let δ be a derivation on a commutative noetherian \mathbb{C} -algebra R.

- (1) Let P be a nonzero prime ideal of the skew polynomial algebra $R[z;\delta]$. Then $P \cap R$ is a prime ideal that is δ -stable. If the derivation $\overline{\delta}$ in $R/P \cap R$ induced by δ is non-zero then $P = (P \cap R)R[z;\delta]$ and $P \cap R \neq 0$.
- (2) The commutative polynomial algebra S = R[z] becomes a Poisson algebra with Poisson bracket $\{-,-\}_{\delta}$ defined by $\{a,b\}_{\delta} = 0, \{z,a\}_{\delta} = \delta(a)$ for all $a,b \in R$. That is, S is the Poisson polynomial algebra $R[z;\delta]_p$. Let P be a nonzero Poisson prime ideal of S. Then $P \cap R$ is δ -Poisson prime. If the derivation $\bar{\delta}$ in $R/P \cap R$ induced by δ is non-zero then $P = (P \cap R)S$ and $P \cap R \neq 0$.
- Proof. (1) Since $z(P \cap R) = (P \cap R)z + \delta(P \cap R)$, $\delta(P \cap R)$ is contained in $P \cap R$ and thus $P \cap R$ is δ -stable. Let I and J be δ -ideals of R such that $IJ \subseteq P \cap R$. Then $(IR[z;\delta])(JR[z;\delta])$ is contained in P and thus $I \subseteq P$ or $J \subseteq P$. It follows that $P \cap R$ is δ -prime. Let Q be a minimal prime ideal of $P \cap R$. Then the largest δ -ideal contained in Q is a prime ideal containing $P \cap R$ by [1, 3.3.2], and thus every minimal prime ideal of $P \cap R$ is δ -stable. Since a finite product of minimal prime ideals of $P \cap R$ is contained in $P \cap R$ by [4, Theorem 2.4] and $P \cap R$ is δ -prime, $P \cap R$ is a prime ideal.

Note that $(P \cap R)R[z; \delta]$ is an ideal of $R[z; \delta]$ and $R[z; \delta]/(P \cap R)R[z; \delta]$ is isomorphic to $(R/P \cap R)[z; \overline{\delta}]$. Let D be the quotient field of $R/P \cap R$ and let $\overline{\delta}'$ be the extension of $\overline{\delta}$ to D, which exists uniquely by [2, Lemma 1.3]. Since D is commutative and $\overline{\delta}'$ is non-zero, $\overline{\delta}'$ is not inner. Hence

 $D[z; \overline{\delta}']$ is simple by Lemma 1.3(1), and thus the ideal of $D[z; \overline{\delta}']$ induced by P is zero. It follows that $P = (P \cap R)R[z; \delta]$. In particular, $P \cap R \neq 0$ since $P \neq 0$.

(2) If $\delta(R) \subseteq P$ then $P \cap R$ is δ -stable. If $\delta(R) \not\subseteq P$ then $z \notin P$ since $\{z,R\}_{\delta} = \delta(R)$, and thus $P \cap R$ is δ -stable by [6, 2.4]. Hence $P \cap R$ is δ -Poisson prime, $(P \cap R)S$ is a Poisson ideal of S by [6, 2.2] and $S/(P \cap R)S$ is Poisson isomorphic to the Poisson polynomial algebra $(R/P \cap R)[z;\overline{\delta}]$. Let D be the quotient field of $R/P \cap R$ and let $\overline{\delta}'$ be the extension of $\overline{\delta}$. Then $\overline{\delta}'$ is not inner since $\overline{\delta}'$ is non-zero and the Poisson bracket of D is trivial. Hence $D[z;\overline{\delta}']$ is Poisson simple by Lemma 1.3(2), and thus the Poisson ideal of $D[z;\overline{\delta}']$ induced by P is zero. It follows that $P = (P \cap R)S$. In particular, $P \cap R \neq 0$ since $P \neq 0$.

References

- [1] J. Dixmier, *Enveloping algebras*, The 1996 printing of the 1977 English translation Graduate Studies in Mathematics, vol. **11**, American Mathematical Society, Providence, 1996.
- [2] K. R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras, J. Algebra 150 (1992), 324-377.
- [3] ______, A Dixmier-Moeglin equivalence for Poisson algebras with torus actions, in Algebra and Its Applications (D. V. Huynh, S. K. Jain, and S. R. Lopez-Permouth, Eds.) Contemp. Math. 419 (2006), 131-154.
- [4] K. R. Goodearl and R. B. Warfield, An introduction to noncommutative noetherian rings, London Mathematical Society Student Text 16, Cambridge University Press, 1989.
- [5] S.-Q. Oh, Poisson polynomial rings, Comm. Algebra **34** (2006), 1265-1277.
- [6] ______, Poisson prime ideals of Poisson polynomial rings, Comm. Algebra 35 (2007), 3007-3012.

*

Department of Mathematics Chungnam National University Daejeon 305-764, Republic of Korea E-mail: nhmyung@cnu.ac.kr

**

Department of Mathematics Chungnam University Daejeon 305-764, Republic of Korea E-mail: sqoh@cnu.ac.kr