PRIMITIVE ORE EXTENSIONS OVER SPECIAL MATRIX RINGS

JANG-HO CHUN AND JUNE-WON PARK

ABSTRACT. We find an equivalent condition of $M_n(R)[x, \delta]$ to be primitive and characterize a special subring P of $M_n(R)$. Also, we find an equivalent condition of $P[x, \delta]$ to be primitive.

1. Introduction

Jordan[5] introduced two different sufficient conditions for an Ore extensions $R[x, \delta]$ to be primitive, for any right noetherian differential ring R. Goodearl and Warfield[3] showed necessary and sufficient conditions for $R[x, \delta]$, over a commutative noetherian ring R, to be primitive. In this paper, we study the primitivity of $R[x, \delta]$, over a matrix ring and over a special subring of a matrix ring.

Throughout this paper, all rings are associative with identity and δ will be a derivation on R, i.e., δ is an additive map from R to itself which satisfies the product rule, $\delta(ab) = \delta(a)b + a\delta(b)$ for each $a, b \in R$.

The Ore extension $S=R[x,\delta]$ is a ring of polynomials over R in an indeterminate x with multiplication subject to the relation

$$xr = rx + \delta(r)$$

for each $r \in R$.

DEFINITION. (1) An ideal I of R is said to be a δ -ideal if $\delta(I) \subseteq I$.

- (2) A δ -ideal I of R is said to be δ -prime if for all δ -ideals A, B of R such that $AB \subseteq I$ either $A \subseteq I$ or $B \subseteq I$.
- (3) R is said to be δ -primitive if there exists a maximal right ideal M of R containing no non-zero δ -ideals of R.

Received December 14, 1995. Revised March 10, 1996.

1991 AMS Subject Classification: 16D60, 16S32.

Key words and phrases: derivation, matrix ring, Ore extensions, primitive.

(4) R is said to be δG -ring if it is δ -prime and the intersection of its non zero δ -prime ideals is non zero.

2. Primitive Ore extentions over matrix ring

LEMMA 2.1 [3, THEOREM]. Let R be a commutative noetherian differential ring with no \mathbb{Z} -torsion. Then $R[x, \delta]$ is primitive if and only if $\delta \neq 0$ and R is either δ -primitive or a δG -ring.

Let $A = M_n(R)$ be the ring of all $n \times n$ matrices over an arbitrary ring R; then any derivation δ_R of R can be extended to A by putting $\delta((a_{ij})) = (\delta_R a_{ij})$. Namely, the derivative of a matrix is the matrix of the derivatives of the entries. We shall denote this derivation also by δ_R .

LEMMA 2.2[1, THEOREM2]. Let R be a commutative ring. Then the derivations δ of $M_n(R)$ are of the form $\delta = \delta_R + ad_v$, where $v \in M_n(R)$ and $ad_v(r) = rv - vr$ is the inner derivation determined by v.

For an element v of a ring R if $\delta = ad_v$, then $R[x, \delta]$ is a polynomial ring R[x + v]. Thus we have the following proposition.

PROPOSITION 2.3. Let $A = M_n(R)$ over a commutative ring R and $\delta = \delta_R + ad_v$ be a derivation of A, where $v \in M_n(R)$. Then

$$A[x,\delta] \cong A[x+v,\delta_R]$$

where δ_R is a trivial extension of R

$$\cong M_n(R[x+v,\delta_R])$$

where δ_R is a restriction of A.

PROPOSITION 2.4. Let $A = M_n(R)$ over a commutative ring R and $\delta = ad_v + \delta_R$. Then $M_n(I)$ is a δ -ideal of A if and only if I is a δ_R -ideal of R.

PROOF. Let $M_n(I)$ be a δ -ideal of A and $(a_{ij}) \in M_n(I)$ such that $a_{11}(\neq 0) \in I$ and $a_{ij} = 0$ for i or $j \neq 1$. Then $\delta((a_{ij})) \in M_n(I)$. But $\delta_R(a_{11}) = (1,1)$ entry of $\delta_R((a_{ij})) = (1,1)$ entry of $(ad_v + \delta_R((a_{ij}))) = \delta((a_{ij}))_{11} \in I$. So I is a δ_R -ideal of R. The converse is trivial.

COROLLARY 2.5. Let $A = M_n(R)$ and $\delta = ad_v + \delta_R$. Then

- (1) A is δ -primitive if and only if R is δ_R -primitive.
- (2) A is a δG -ring if and only if R is a $\delta_R G$ -ring.

THEOREM 2.6. Let R be a commutative noetherian differential ring with no \mathbb{Z} -torsion and $A = M_n(R)$. Then $A[x, \delta]$ is primitive if and only if $\delta \neq$ inner and A is either δ -primitive or a δG -ring.

PROOF. Since $A[x, \delta] \cong A[x + v, \delta_R] \cong M_n(R[x + v, \delta_R])$ where $\delta = ad_v + \delta_R$,

 $A[x, \delta]$ is primitive

- $\Leftrightarrow R[x+v,\delta_R]$ is primitive because primitivity is Morita-invariant
- $\Leftrightarrow \delta_R \neq 0$ and R is either δ_R -primitive or a $\delta_R G$ -ring by Lemma 2.1
- $\Leftrightarrow \delta \neq \text{inner and } A \text{ is either } \delta\text{-primitive or a } \delta G\text{-ring by Corollary 2.5.}$

3. Ore extensions over special subrings of matrix rings

For a reflexive and transitive relation ρ on the set $I_n = \{1, 2, ..., n\}$ and $M_n(R)$, we use the following conventions:

 E^{ij} = the element of the standard basis of $M_n(R)$,

$$M_n(R)_{\rho} = \{(a_{ij}) \in M_n(R) | a_{ij} = 0 \text{ for } (i,j) \notin \rho\}.$$

It is clear that $M_n(R)_{\rho}$ is a subring of $M_n(R)$. Conversely, if σ is a reflexive relation on I_n and $M_n(R)_{\sigma}$ is a subring of $M_n(R)$ then σ is transitive. We say that a subring P of $M_n(R)$ is special with the relation ρ iff $P \cong M_n(R)_{\rho}$.

If $\{U_{ij}|i,j\in I_n\}$ is a family of subsets of R, then we denote by $[U_{ij}]$ the set $\{(a_{ij})\in M_n(R)|a_{ij}\in U_{ij} \text{ for all } i,j\in I_n\}$.

The following lemma describes all (two-sided) ideals of special subrings of $M_n(R)$.

PROPOSITION 3.1 [6, LEMMA 2.1]. Let P be a special subring of $M_n(R)$ with the relation ρ and let U be a subset of P. The following conditions are equivalent:

- (1) U is an ideal of P,
- (2) $U = [U_{ij}]$, where U_{ij} are ideals of R such that
 - (a) $U_{ij} = 0$ if $(i,j) \notin \rho$,
 - (b) $U_{ij} + U_{jk} \subseteq U_{ik}$, if $(i, j), (j, k) \in \rho$.

LEMMA 3.2. Let P be a special subring of $M_n(R)$ with the relation ρ . If there exist $\rho_k \equiv I_k \times I_k \subset \rho$ where $I_k = \{i_1, i_2, \dots, i_k\} \subset I_n$ such that $(i,j) \in \rho$ and i or $j \in I_k$ implies $(i,j) \in \rho_k$. Let $U = \{(a_{ij}) \in P \mid a_{ij} = 0 \text{ if } (i,j) \notin \rho_k\}$. Then U is an ideal of P.

Moreover, U is a direct summand of P.

PROOF. By Proposition 3.1, U is an ideal of P. Moreover, let

$$e = (e_{ij}), \text{ where } e_{ij} = \begin{cases} 1 & \text{if } i = j \in I_k \\ 0 & \text{otherwise.} \end{cases}$$

Then e is a central idempotent of P and eP = U. Thus U is a direct summand of P.

For the relation ρ , let

$$C_s = \{(i, s) \in \rho \mid i \in I_n\}$$

and

$$D_t = \{(t,j) \in \rho \mid j \in I_n\}.$$

Then there exist maximal elements $C_{s'}$ and $D_{t'}$ for cardinal numbers in $\{C_s|s\in I_n\}$ and $\{D_t|t\in I_n\}$, respectively. Let

$$C = \bigcup \{C_s | (i, s) \in \rho \Leftrightarrow (i, s') \in \rho \text{ for all } i \in I_n\}$$

and

$$D = \bigcup \{D_t | (t, j) \in \rho \Leftrightarrow (t', j) \in \rho \text{ for all } j \in I_n \}.$$

Then we have the following lemma.

LEMMA 3.3. Let P be a special subring of $M_n(R)$ with the relation ρ and let $U_C(\text{or } U_D) = [U_{ij}]$ where

$$U_{ij} = \begin{cases} R & \text{if } (i,j) \in C(\text{or } D) \\ 0 & \text{if } (i,j) \notin C(\text{or } D) \end{cases}$$

Then $U_C(\text{or } U_D)$ is an ideal of P.

PROOF. Since $P \cdot U_C \subseteq U_C$ obviously, U_C is a left ideal.

Now, assume $C = \{i_1, i_2, \dots, i_i\} \times \{j_1, j_2, \dots, j_j\}$ and suppose $U_C \cdot P \not\subset U_C$. Then $U_C \cdot P$ has an element whose (i, j) entry is non zero for some $(i, j) \in \rho - C$. So there exists $k \in I_n$ such that $E^{ik} \cdot E^{kj} = E^{ij}$ where $(i, k) \in C$, $(k, j) \in \rho$ and $(i, j) \in \rho - C$. This means that $E^{i_1j}, E^{i_2j}, \dots, E^{i_ij}$ are elements of P and $\{(i_1, j), (i_2, j), \dots, (i_i, j)\} \subseteq \rho - C$. This is a contradiction to the definition of C. Thus U_C is a right ideal of P. Therefore U_C is an ideal of P.

Similarly, U_D is an ideal of P.

THEOREM 3.4. Let P be a special subring of $M_n(R)$ with relation ρ . Then P is prime (simple) if and only if $P = M_n(R)$ and R is prime (simple).

PROOF. (\Rightarrow) Suppose $P \neq M_n(R)$. By Lemma 3.3, we can take U_C and U_D ideals of P.

If $U_C \cdot U_D = 0$, then P is not prime.

Suppose $U_C \cdot U_D \neq 0$ and assume $a \in U_C \cdot U_D$, where (α, β) entry of $a \neq 0$. Then for some $k, E^{\alpha k} \cdot E^{k\beta} = E^{\alpha\beta} \in U_C \cdot U_D$ where $(\alpha, k) \in C$ and $(k, \beta) \in D$. Since $E^{\alpha\beta}$ is contained in U_C and U_D , $E^{ij} \in U_C \cdot U_D$ if $(i, j) \in C_\beta$ or D_α . Let

$$\rho' = \{(i,j)|(i,\beta) \in C_{\beta} \text{ and } (\alpha,j) \in D_{\alpha}\}.$$

Then $E^{ij} \in U_C \cdot U_D$ if $(i, j) \in \rho'$.

Now, since ρ is reflexive,

$$\rho' = I_t \times I_t$$
 for some $I_t = \{i_1, i_2, \dots, i_t\} \subset I_n$.

By Lemma 3.2, $U_C \cdot U_D$ is a direct summand of P. Therefore P is not prime.

 (\Leftarrow) It is obvious.

COROLLARY 3.5. Let P be a special subring of $M_n(R)$ with relation ρ . Then $P[x, \delta]$ is prime if and only if $P = M_n(R)$ and R is δ -prime.

PROOF. c.f [4,Theorem 2.2].

THEOREM 3.6. Let R be a commutative noetherian Ore extension with no \mathbb{Z} -torsion and let P is a special subring of $M_n(R)$ with relation ρ . Then $P[x,\delta]$ is primitive if and only if $P=M_n(R), \delta \neq \text{inner and } P$ is either δ -primitive or a δG -ring.

PROOF. It is immediate from Theorem 2.6 and Theorem 3.4.

References

- S. A. Amitsur, Extension of derivations to central simple algebra, Comm. in Algebra 10 (1982), 797-803.
- 2. K. R. Goodearl, Ring Theory, Marcel Dekker, Inc., 1976.
- 3. K. R. Goodearl and R. B. Warfield, Jr., Primitivity in Differential Operator Rings, Math.Z. 180 (1982), 503-523.
- D. A. Jordan, Noetherian Ore Extensions and Jacobson Rings, J. London Math. Soc. 10, 281-291.
- 5. _____, Primitive Ore Extensions, Glasgow Math. J. 18, 93-97.
- A. Nowicki, Derivations of Special Subrings of Matrix Rings and Regular Graphs, Tsukuba J. Math. 7, 281-297.

Jang-Ho Chun Department of mathematics Yeungnam University Kyongsan 712-749, Korea

June-Won Park Department of mathematics Kyungpook Sanup University Kyongsan 712-701, Korea