• Title/Summary/Keyword: Delay ordinary differential equations

Search Result 10, Processing Time 0.02 seconds

AN INITIAL VALUE METHOD FOR SINGULARLY PERTURBED SYSTEM OF REACTION-DIFFUSION TYPE DELAY DIFFERENTIAL EQUATIONS

  • Subburayan, V.;Ramanujam, N.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.4
    • /
    • pp.221-237
    • /
    • 2013
  • In this paper an asymptotic numerical method named as Initial Value Method (IVM) is suggested to solve the singularly perturbed weakly coupled system of reaction-diffusion type second order ordinary differential equations with negative shift (delay) terms. In this method, the original problem of solving the second order system of equations is reduced to solving eight first order singularly perturbed differential equations without delay and one system of difference equations. These singularly perturbed problems are solved by the second order hybrid finite difference scheme. An error estimate for this method is derived by using supremum norm and it is of almost second order. Numerical results are provided to illustrate the theoretical results.

THE BUCHSTAB'S FUNCTION AND THE OPERATIONAL TAU METHOD

  • Aliabadi, M.Hosseini
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.3
    • /
    • pp.905-915
    • /
    • 2000
  • In this article we discuss some aspects of operational Tau Method on delay differential equations and then we apply this method on the differential delay equation defined by $\omega(u)\;=\frac{1}{u}\;for\;1\lequ\leq2$ and $(u\omega(u))'\;=\omega(u-1)\;foru\geq2$, which was introduced by Buchstab. As Khajah et al.[1] applied the Recursive Tau Method on this problem, they had to apply that Method under the Mathematica software to get reasonable accuracy. We present very good results obtained just by applying the Operational Tau Method using a Fortran code. The results show that we can obtain as much accuracy as is allowed by the Fortran compiler and the machine-limitations. The easy applications and reported results concerning the Operational Tau are again confirming the numerical capabilities of this Method to handle problems in different applications.

OPTIMIZATION OF PARAMETERS IN MATHEMATICAL MODELS OF BIOLOGICAL SYSTEMS

  • Choo, S.M.;Kim, Y.H.
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.1_2
    • /
    • pp.355-364
    • /
    • 2008
  • Under pathological stress stimuli, dynamics of a biological system can be changed by alteration of several components such as functional proteins, ultimately leading to disease state. These dynamics in disease state can be modeled using differential equations in which kinetic or system parameters can be obtained from experimental data. One of the most effective ways to restore a particular disease state of biology system (i.e., cell, organ and organism) into the normal state makes optimization of the altered components usually represented by system parameters in the differential equations. There has been no such approach as far as we know. Here we show this approach with a cardiac hypertrophy model in which we obtain the existence of the optimal parameters and construct an optimal system which can be used to find the optimal parameters.

  • PDF

Error Control Policy for Initial Value Problems with Discontinuities and Delays

  • Khader, Abdul Hadi Alim A.
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.4
    • /
    • pp.665-684
    • /
    • 2008
  • Runge-Kutta-Nystr$\"{o}$m (RKN) methods provide a popular way to solve the initial value problem (IVP) for a system of ordinary differential equations (ODEs). Users of software are typically asked to specify a tolerance ${\delta}$, that indicates in somewhat vague sense, the level of accuracy required. It is clearly important to understand the precise effect of changing ${\delta}$, and to derive the strongest possible results about the behaviour of the global error that will not have regular behaviour unless an appropriate stepsize selection formula and standard error control policy are used. Faced with this situation sufficient conditions on an algorithm that guarantee such behaviour for the global error to be asympotatically linear in ${\delta}$ as ${\delta}{\rightarrow}0$, that were first derived by Stetter. Here we extend the analysis to cover a certain class of ODEs with low-order derivative discontinuities, and the class of ODEs with constant delays. We show that standard error control techniques will be successful if discontinuities are handled correctly and delay terms are calculated with sufficient accurate interpolants. It is perhaps surprising that several delay ODE algorithms that have been proposed do not use sufficiently accurate interpolants to guarantee asymptotic proportionality. Our theoretical results are illustrated numerically.

A FIFTH ORDER NUMERICAL METHOD FOR SINGULARLY PERTURBED DIFFERENTIAL-DIFFERENCE EQUATIONS WITH NEGATIVE SHIFT

  • Chakravarthy, P. Pramod;Phaneendra, K.;Reddy, Y.N.
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.1_2
    • /
    • pp.441-452
    • /
    • 2009
  • In this paper, a fifth order numerical method is presented for solving singularly perturbed differential-difference equations with negative shift. In recent papers the term negative shift has been using for delay. Similar boundary value problems are associated with expected first exit time problem of the membrane, potential in models for neuron and in variational problems in control theory. In the numerical treatment for such type of boundary value problems, first we use Taylor approximation to tackle terms containing small shifts which converts it to a boundary value problem for singularly perturbed differential equation. The two point boundary value problem is transformed into general first order ordinary differential equation system. A discrete approximation of a fifth order compact difference scheme is presented for the first order system and is solved using the boundary conditions. Several numerical examples are solved and compared with exact solution. It is observed that present method approximates the exact solution very well.

  • PDF

NECESSARY AND SUFFICIENT OPTIMALITY CONDITIONS FOR CONTROL SYSTEMS DESCRIBED BY INTEGRAL EQUATIONS WITH DELAY

  • Elangar, Gamal-N.;Mohammad a Kazemi;Kim, Hoon-Joo
    • Journal of the Korean Mathematical Society
    • /
    • v.37 no.4
    • /
    • pp.625-643
    • /
    • 2000
  • In this paper we formulate an optimal control problem governed by time-delay Volterra integral equations; the problem includes control constraints as well as terminal equality and inequality constraints on the terminal state variables. First, using a special type of state and control variations, we represent a relatively simple and self-contained method for deriving new necessary conditions in the form of Pontryagin minimum principle. We show that these results immediately yield classical Pontryagin necessary conditions for control processes governed by ordinary differential equations (with or without delay). Next, imposing suitable convexity conditions on the functions involved, we derive Mangasarian-type and Arrow-type sufficient optimality conditions.

  • PDF

A MATHEMATICAL MODEL OF TRANSMISSION OF PLASMODIUM VIVAX MALARIA WITH A CONSTANT TIME DELAY FROM INFECTION TO INFECTIOUS

  • Kammanee, Athassawat;Tansuiy, Orawan
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.685-699
    • /
    • 2019
  • This research is focused on a continuous epidemic model of transmission of Plasmodium vivax malaria with a time delay. The model is represented as a system of ordinary differential equations with delay. There are two equilibria, which are the disease-free state and the endemic equilibrium, depending on the basic reproduction number, $R_0$, which is calculated and decreases with the time delay. Moreover, the disease-free equilibrium is locally asymptotically stable if $R_0<1$. If $R_0>1$, a unique endemic steady state exists and is locally stable. Furthermore, Hopf bifurcation is applied to determine the conditions for periodic solutions.

A study on mathematical models describing population changes of biological species (생물 종의 개체 수 변화를 기술하는 수학적 모델에 대한 고찰)

  • Shim, Seong-A
    • Journal for History of Mathematics
    • /
    • v.24 no.2
    • /
    • pp.47-59
    • /
    • 2011
  • Various mathematical models have been widely studied recently in both fields of mathematics and ecology since they help us understand the dynamical process of population changes in biological species living in a certain habitat and give useful predictions. The world population model proposed by Malthus, a British economist, in his work 'An Essay on the Principle of Population' published in the period of 1789~1826 is one of the early mathematical models on population changes. Malthus' models and the carrying capacity models of Verhulst in 1845 were based on exponential type functions. The independent research field of mathematical ecology has been started from Lotka's works in 1920's. Since then various different mathematical models has been proposed and examined. This article mainly deals with single species population change models expressed in terms of ordinary differential equations.

Linear Stability Analysis of a Baffled Rocket Combustor (배플이 장착된 로켓 연소기의 선형 안정성 해석)

  • Lee, Soo Yong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

Discrimination and bifurcation analysis of tumor immune interaction in fractional form

  • Taj, Muhammad;Khadimallah, Mohamed A.;Hussain, Muzamal;Rashid, Yahya;Ishaque, Waqas;Mahmoud, S.R.;Din, Qamar;Alwabli, Afaf S.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.10 no.4
    • /
    • pp.359-371
    • /
    • 2021
  • A tumor immune interaction is a main topic of interest in the last couple of decades because majority of human population suffered by tumor, formed by the abnormal growth of cells and is continuously interacted with the immune system. Because of its wide range of applications, many researchers have modeled this tumor immune interaction in the form of ordinary, delay and fractional order differential equations as the majority of biological models have a long range temporal memory. So in the present work, tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and interleukin-2 (IL-2) are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Furthermore, existence and local stability of fixed points are investigated for discrete model. Moreover, it is proved that two types of bifurcations such as Neimark-Sacker and flip bifurcations are studied. Finally, numerical examples are presented to support our analytical results.