Browse > Article
http://dx.doi.org/10.12989/anr.2021.10.4.359

Discrimination and bifurcation analysis of tumor immune interaction in fractional form  

Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir)
Khadimallah, Mohamed A. (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad)
Rashid, Yahya (Prince Sattam Bin Abdulaziz University, College of Engineering, Civil Engineering Department)
Ishaque, Waqas (Department of Mathematics, University of Azad Jammu and Kashmir)
Mahmoud, S.R. (GRC Department, Faculty of Applied studies, King Abdulaziz University)
Din, Qamar (Department of Mathematics University of Poonch Rawalakot 12350)
Alwabli, Afaf S. (Department of Biological Sciences, Rabigh-Faculty of Science & Arts, King Abdulaziz University)
Tounsi, Abdelouahed (YFL (Yonsei Frontier Lab), Yonsei University)
Publication Information
Advances in nano research / v.10, no.4, 2021 , pp. 359-371 More about this Journal
Abstract
A tumor immune interaction is a main topic of interest in the last couple of decades because majority of human population suffered by tumor, formed by the abnormal growth of cells and is continuously interacted with the immune system. Because of its wide range of applications, many researchers have modeled this tumor immune interaction in the form of ordinary, delay and fractional order differential equations as the majority of biological models have a long range temporal memory. So in the present work, tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and interleukin-2 (IL-2) are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Furthermore, existence and local stability of fixed points are investigated for discrete model. Moreover, it is proved that two types of bifurcations such as Neimark-Sacker and flip bifurcations are studied. Finally, numerical examples are presented to support our analytical results.
Keywords
tumor immune interaction; stability; Neimark-Sacker bifurcation; period-doubling bifurcation;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abbas, S., Banerjee, M. and Momani, S. (2011), "Dynamical analysis of fractional-order modified logistic model", Comput. Mathe. Applicat., 62(3), 1098-1104. https://doi.org/10.1016/j.camwa.2011.03.072   DOI
2 Agarwal, R. and Karahanna, E. (2000), "Time flies when you're having fun: Cognitive absorption and beliefs about information technology usage", MIS Quarterly, 665-694. https://doi.org/10.2307/3250951   DOI
3 Ahmed, E., El-Sayed, A.M.A. and El-Saka, H.A. (2007), "Equilibrium points, stability and numerical solutions of fractional-order predator-prey and rabies models", J. Mathe. Anal. Applicat., 325(1), 542-553. https://doi.org/10.1016/j.jmaa.2006.01.087   DOI
4 Ahmed, E., Hashish, A. and Rihan, F.A. (2012), "On fractional order cancer model", J. Fract. Calculus Appl. Anal., 3(2), 1-6. https://doi.org/10.1155/2013/816803   DOI
5 Kuznetsov, V.A., Makalkin, I.A., Taylor, M.A. and Perelson, A.S. (1994), "Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis", Bull. Mathe. Biol., 56(2), 295-321. https://doi.org/10.1016/S0092-8240(05)80260-5   DOI
6 Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012), "Global cancer transitions according to the Human Development Index (2008-2030): a population-based study", lancet oncol., 13(8), 790-801. https://doi.org/10.1016/S1470-2045(12)70211-5   DOI
7 Chabner, B.A. and Roberts, T.G. (2005), "Chemotherapy and the war on cancer", Nature Rev. Cancer, 5(1), 65-72. https://doi.org/10.1038/nrc1529   DOI
8 Chen, W.-C. (2008), "Nonlinear dynamics and chaos in a fractional-order financial system", Chaos Solitons Fractals, 36(5), 1305-1314. https://doi.org/10.1016/j.chaos.2006.07.051   DOI
9 Duan, W.L., Fang, H. and Zeng, C. (2019), "The stability analysis of tumor-immune responses to chemotherapy system with gaussian white noises", Chaos Solitons Fractals, 127, 96-102. https://doi.org/10.1016/j.chaos.2019.06.030   DOI
10 Tenreiro Machado, J.A., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. and Galhano, A.F. (2010), "Some applications of fractional calculus in engineering", Mathe. Problems Eng. https://doi.org/10.1155/2010/639801   DOI
11 Safaei, B., Khoda, F.H. and Fattahi, A.M. (2019), "Non-classical plate model for single-layered graphene sheet for axial buckling", Adv. Nano Res., Int. J., 7(4), 265-275. https://doi.org/10.12989/anr.2019.7.4.265   DOI
12 Banerjee, S. (2008), "Immunotherapy with interleukin-2: a study based on mathematical modeling", Int. J. Appl. Mathe. Comput. Sci., 18(3), 389-398. https://doi.org/10.2478/v10006-008-0035-6   DOI
13 Oldham, K.B. (2010), "Fractional differential equations in electrochemistry", Adv. Eng. Software, 41(1), 9-12. https//doi.org/10.1016/j.advengsoft.2008.12.012   DOI
14 Panda, S.K. and Katariya, P.V. (2015), "Stability and free vibration behaviour of laminated composite panels under thermomechanical loading", Int. J. Appl. Computat. Mathe., 1(3), 475-490.   DOI
15 Arafa, A.A.M., Rida, S.Z. and Khalil, M. (2013), "The effect of anti-viral drug treatment of human immunodeficiency virus type 1 (HIV-1) described by a fractional order model", Appl. Mathe. Modell., 37(4), 2189-2196. https://doi.org/10.1016/j.apm.2012.05.002   DOI
16 Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., Int. J., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603   DOI
17 Banerjee, S. and Sarkar, R.R. (2008), "Delay-induced model for tumor-immune interaction and control of malignant tumor growth", Bio Syst., 91(1), 268-288. https://doi.org/:10.1016/j.biosystems.2007.10.002   DOI
18 Podlubny, I. (1999), "Fractional differential equations", Vol. 198 of Mathematics in Science and Engineering, Academic Press, San Diego, CA, USA. https//doi.org/10.12691/ajma-1-1-3
19 Rihan, F.A., Hashish, A., Al-Maskari, F., Hussein, M.S., Ahmed, E., Riaz, M.B. and Yafia, R. (2016), "Dynamics of tumor-immune system with fractional-order", J. Tumor Res., 2(1), 109-115.
20 Rowlands, M. and Gunnell, D. (2009), "HArrIS r, VATTEN LJ, HOLLy JM, MAr-TIN rM. Circulating insulin-like growth factor peptides and prostate cancer risk: A systematic review and meta-analysis", Int. J. Cancer, 124, 2416-2429. https://doi.org/10.1002/ijc.24202   DOI
21 Simsek, M. (2011), "Forced vibration of an embedded single-walled carbon nanotube traversed by a moving load using nonlocal Timoshenko beam theory", Steel Compos. Struct., Int. J., 11(1), 59-76. https://doi.org/10.12989/scs.2011.11.1.059   DOI
22 Tarasov, V.E. (2008), "Fractional vector calculus and fractional Maxwell's equations", Annals Phys., 323(11), 2756-2778. https://doi.org/10.1016/j.aop.2008.04.005   DOI
23 Thamareerat, N., Luadsong, A. and Aschariyaphotha, N. (2017), "Stability results of a fractional model for unsteady-state fluid flow problem", Adv. Differ. Equ., 74. https://doi.org/10.1186/s13662-017-1116-3   DOI
24 Din, Q. (2017), "Complexity and chaos control in a discrete-time prey-predator model", Commun. Nonlinear Sci. Numer. Simul., 49, 113-134. https://doi.org/10.1016/j.cnsns.2017.01.025   DOI
25 De Pillis, L.G. and Radunskaya, A. (2003), "The dynamics of an optimally controlled tumor model: A case study", Mathe. Comput. Modell., 37(11), 1221-1244. https://doi.org/10.1016/S0895-7177(03)00133   DOI
26 De Pillis, L.G., Gu, W. and Radunskaya, A.E. (2006), "Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations", J. Theor. Biol., 238(4), 841-862. https://doi:10.1016/j.jtbi.2005.06.037   DOI
27 DeLisi, C. and Rescigno, A. (1977), "Immune surveillance and neoplasia-1 a minimal mathematical model", Bull. Mathe. Biol., 39(2), 201-221. https://doi.org/10.1016/S0092-8240(77)80008-6   DOI
28 Marincola, F.M., White, D.E., Wise, A.P. and Rosenberg, S.A. (1995), "Combination therapy with interferon alfa-2a and interleukin-2 for the treatment of metastatic cancer", J. Clinical Oncology, 13(5), 1110-1122. https://doi.org/10.1385/1-59745-011   DOI
29 Din, Q. and Ishaque, W. (2020), "Bifurcation analysis and chaos control in discrete-time eco-epidemiological models of pelicans at risk in the Salton Sea", Int. J. Dyn. Control, 8(1), 132-148. https://doi.org/10.1007/s40435-019-00508-x   DOI
30 Katariya, P.V. and Panda, S.K. (2016), "Thermal buckling and vibration analysis of laminated composite curved shell panel", Aircr. Eng. Aerosp. Technol., 88(1), 97-107. https://doi.org/10.1108/AEAT-11-2013-0202   DOI
31 Zhang, J., Nan, J., Du, W., Chu, Y. and Luo, H. (2016), "Dynamic analysis for a fractional-order autonomous chaotic system", Discrete Dyn. Nature Soc., 2016. https://doi.org/10.1155/2016/8712496.   DOI
32 De Boer, R.J., Hogeweg, P., Dullens, H.F., De Weger, R.A. and Den Otter, W. (1985), "Macrophage T lymphocyte interactions in the anti-tumor immune response a mathematical model", J. Immunol., 134(4), 2748-2758. https://doi.org/10.1016/S0022-5193(05)80142-0   DOI
33 Wen, G., Chen, S. and Jin, Q. (2008), "A new criterion of period-doubling bifurcation in maps and its application to an inertial impact shaker", J. Sound Vib., 311(1-2), 212-223. https://doi.org/10.1016/j.jsv.2007.09.003   DOI
34 Thariat, J., Hannoun-Levi, J.M., Myint, A.S., Vuong, T. and Gerard, J.P. (2013), "Past, present, and future of radiotherapy for the benefit of patients", Nature Rev. Clinical Oncol., 10(1), 52. https://doi.org/10.1038/nrclinonc.2012.203   DOI
35 Ucar, E., Ozdemir, N. and Altun, E. (2019), "Fractional order model of immune cells influenced by cancer cells", Mathe. Modell. Natural Phenomena, 14(3), 308. https://doi.org/10.1051/mmnp/2019002   DOI
36 Villasana, M. and Radunskaya, A. (2003), "A delay differential equation model for tumor growth", J. Mathe. Biol., 47(3), 270-294. https://doi.org/10.1007/s00285-003-0211-0   DOI
37 Duan, W.L. (2020), "The stability analysis of tumor-immune responses to chemotherapy system driven by Gaussian colored noises", Chaos Solitons Fractals, 141, 110303. https://doi.org/10.1016/j.chaos.2020.110303   DOI
38 Wen, G. (2005), "Criterion to identify Hopf bifurcations in maps of arbitrary dimension", Phys. Rev. E, 72(2), 026201. https://doi.org/10.1103/PhysRevE.72.026201   DOI
39 Wyld, L., Audisio, R.A. and Poston, G.J. (2015), "The evolution of cancer surgery and future perspectives", Nature Rev Clinical Oncol., 12(2), 115. https://doi.org/10.1038/nrclinonc.2014.191   DOI
40 Yuste, S.B., Acedo, L. and Lindenberg, K. (2004), "Subdiffusionlimited A+ B→ C reaction-subdiffusion process", Phys. Rev. E, 69(3), 36-126. https://doi.org/10.1103/PhysRevE.69.036126   DOI
41 Kar, V.R., Mahapatra, T.R. and Panda, S.K. (2017), "Effect of different temperature load on thermal postbuckling behaviour of functionally graded shallow curved shell panels", Compos. Struct., 160, 1236-1247. https://doi.org/10.1016/j.compstruct.2016.10.125   DOI
42 Itik, M., Salamci, M.U. and Banks, S.P. (2009), "Optimal control of drug therapy in cancer treatment", Nonlinear Anal.: Theory, Methods Applicat., 71(12), e1473-e1486. https://doi.org/10.3906/elk-1001-411   DOI
43 Kar, V.R. and Panda, S.K. (2016), "Post-buckling behaviour of shear deformable functionally graded curved shell panel under edge compression", Int. J. Mech. Sci., 115, 318-324. https://doi.org/10.1016/j.ijmecsci.2016.07.014   DOI
44 Kar, V.R., Panda, S.K. and Mahapatra, T.R. (2016), "Thermal buckling behaviour of shear deformable functionally graded single/doubly curved shell panel with TD and TID properties", Adv. Mater. Res., Int. J., 5(4), 205-221.
45 Karami, B., Janghorban, M. and Tounsi, A. (2017), "Effects of triaxial magnetic field on the anisotropic nanoplates", Steel Compos. Struct, Int. J., 25(3), 361-374. https://doi.org/10.12989/scs.2017.25.3.361   DOI
46 Gonzalez-Parra, G., Arenas, A.J. and Chen-Charpentier, B.M (2014), "A fractional order epidemic model for the simulation of outbreaks of influenza A (H1N1)", Mathe. Methods Appl. Sci., 37(15), 2218-2226. https://doi.org/10.1002/mma.2968   DOI
47 Edelstein-Keshet, L. (2005), "Mathematical models in biology", SIAM. https://doi.org/10.1137/1.9780898719147
48 Eladdadi, A., Pillis, L.D. and Kim, P. (2018), "Modelling tumour-immune dynamics, disease progression and treatment", Taylor and Francis. https://doi.org/10.1080/23737867.2018.1483003
49 El-Sayed, A.M.A., Elsonbaty, A., Elsadany, A.A. and Matouk, A.E. (2016), "Dynamical analysis and circuit simulation of a new fractional-order hyperchaotic system and its discretization", Int. J. Bifurcat. Chaos, 26(13), 1650222. https://doi.org/10.1142/S0218127416502229   DOI
50 Galach, M. (2003), "Dynamics of the Tumor-Immune System Competition the Effect of Time Delay", Int. J. Appl. Mathe. Comput. Sci, 13, 395-406. https://doi.org/10.1155/DDNS/2006/58463   DOI
51 Gorenflo, R. and Mainardi, F. (1997), "Fractional calculus", Fractals and fractional calculus in continuum mechanics, Springer, 223-276. https://doi.org/10.1007/978-3-7091-2664-6
52 Hilfer, R. (2000), "Applications of fractional calculus in physics", World scientific, Singapore. https://doi.org/10.1142/3779
53 Huang, C., Cao, J. and Xiao, M. (2016), "Hybrid control on bifurcation for a delayed fractional gene regulatory network." Chaos Solitons Fractals, 87, 19-29. https://doi.org/10.1007/s11431-018-9376-2   DOI
54 Arenas, A.J., Gonzalez-Parra, G. and Chen-Charpentier, B.M. (2016), "Construction of nonstandard finite difference schemes for the SI and SIR epidemic models of fractional order", Mathe. Comput. Simul., 121, 48-63. https://doi.org/10.1155/2017/8273430   DOI
55 Rutter, E.M. and Kuang, Y. (2017), "Global dynamics of a model of joint hormone treatment with dendritic cell vaccine for prostate cancer", Discrete Continuous Dyn. Syst.-B, 22(3), 1001. http://dx.doi.org/10.3934/dcdsb.2017050   DOI
56 Jun, D., Guang-jun, Z., Yong, X., Hong, Y. and Jue, W. (2014), "Dynamic behavior analysis of fractional-order Hindmarsh-Rose neuronal model", Cognitiveneurodynamics, 8(2), 167-175. https://dx.doi.org/10.1007%2Fs11571-013-9273-x   DOI
57 Elsadany, A. and Matouk, A. (2015), "Dynamical behaviors of fractional-order Lotka-Volterra predator-prey model and its discretization", J. Appl. Mathe. Comput., 49(1-2), 269-283. http://dx.doi.org/10.1007%2Fs12190-014-0838-6   DOI
58 Karami, B., Janghorban, M. and Tounsi, A. (2018), "Nonlocal strain gradient 3D elasticity theory for anisotropic spherical nanoparticles", Steel Compos. Struct., Int. J., 27(2), 201-216. https://doi.org/10.12989/scs.2018.27.2.201   DOI
59 Katariya, P.V. and Panda, S.K. (2020), "Numerical analysis of thermal post-buckling strength of laminated skew sandwich composite shell panel structure including stretching effect", Steel Compos. Struct., Int. J., 34(2), 279-288. https://doi.org/10.12989/sss.2017.20.5.595   DOI
60 Katariya, P.V., Panda, S.K., Hirwani, C.K., Mehar, K. and Thakare, O. (2017), "Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre", Smart Struct. Syst., Int. J., 20(5), 595-605. https://doi.org/10.12989/sss.2017.20.5.595   DOI
61 Matouk, A. and Elsadany, A. (2016), "Dynamical analysis, stabilization and discretization of a chaotic fractional-order GLV model", Nonlinear Dyn., 85(3), 1597-1612. https//doi.org/10.1007/s11071-016-2781-6   DOI
62 Curti, B.D., Ochoa, A.C., Urba, W.J., Alvord, W.G., Kopp, W.C., Powers, G., Hawk, C., Creekmore, S.P., Gause, B.L., Janik, J.E. and Holmlund, J.T. (1996), "Influence of interleukin-2 regimens on circulating populations of lymphocytes after adoptive transfer of anti-CD3-stimulated T cells: results from a phase I trial in cancer patients", Journal of Immunotherapy with Emphasis on Tumor Immunology: Official Journal of the Society for Biological Therapy, 19(4), 296-308. https://doi.org/ 10.1097/00002371-199607000-00005.   DOI
63 Kirschner, D. and Panetta, J.C. (1998), "Modeling immunotherapy of the tumor-immune interaction", J. Mathe. Biol., 37(3), 235-252. https://doi.org/10.1007/s002850050127   DOI
64 Laskin, N. (2002), "Fractional schrodinger equation", Phys. Rev. E, 66(5), 056108. https://doi.org/10.1103/PhysRevE.66.056108   DOI
65 Liao, W., Lin, J.X. and Leonard, W.J. (2011), "IL-2 family cytokines: new insights into the complex roles of IL-2 as a broad regulator of T helper cell differentiation", Current Opinion Immunol., 23(5), 598-604. https//doi.org/10.1016/j.coi.2011.08.003   DOI
66 Madani, H., Hosseini, H. and Shokravi, M. (2016), "Differential cubature method for vibration analysis of embedded FG-CNT-reinforced piezoelectric cylindrical shells subjected to uniform and non-uniform temperature distributions", Steel Compos. Struct., Int. J., 22(4), 889-913. https://doi.org/10.12989/scs.2016.22.4.889   DOI
67 Matouk, A.E., Elsadany, A.A., Ahmed, E. and Agiza, H.N. (2015), "Dynamical behavior of fractional-order Hastings-Powell food chain model and its discretization", Commun. Nonlinear Sci. Numer. Simul., 27(1-3), 153-167. http://dx.doi.org/http://dx.doi.org/10.10 16/j.cnsns.2015.03.004   DOI
68 Mehar, K., Panda, S.K., Devarajan, Y. and Choubey, G. (2019), "Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading", Compos. Struct., 216, 406-414. https://doi.org/10.1016/j.compstruct.2019.03.002   DOI
69 Monje, C.A., Chen, Y., Vinagre, B.M., Xue, D. and Feliu-Batlle, V. (2010), "Fractional-order systems and controls: fundamentals and applications", Springer Science and Business Media. https//doi.org/:10.1007/978-1-84996-335-0