1 |
R. Anderson, Infectious Disease of Humans: dynamics and control, Cambridge University Press, Cambrigde, 1991.
|
2 |
F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol. 73 (2011), no. 3, 639-657.
DOI
|
3 |
M. Chuedoung, W. Sarika, and Y. Lenbury, Dynamical analysis of a nonlinear model for glucose-insulin system incorporating delays and -cell compartment, Nonlinear Anal. 2009 (2009), e1048-e1058.
|
4 |
L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci. 150 (1998), 131-151.
DOI
|
5 |
M. Gilles and R. Snow, The epidemiology of malaria, in: D. Warrell, H. Gilles (Eds.), Essential malariology, 4th Edition, Arnold, London, 2002.
|
6 |
H.-F. Huo and G.-M. Qiu, Stability of a mathematical model of malaria transmission with relapse, Abstr. Appl. Anal. 2014 (2014), Art. ID 289349, 9 pp.
|
7 |
Y. G. Kwak, H. K. Lee, M. Kim, T. H. Um, and C. R. Cho, Clinical characteristics of vivax malaria and analysis of recurred patients, Infect Chemother 45 (2012), 69-75.
DOI
|
8 |
A. Kammanee, N. Kanyamee, and I. M. Tang, The basic reproduction number for transmission of Plasmodium vivax malaria, The Southeast Asian Journal of Tropical Medicine and Public Health 32 (2001), 702-706.
|
9 |
H. Khalil, Nonliear Systems, 3rd Edition, Prentice Hall, New Jersey, 2002.
|
10 |
J. Kreier, Malaria: epidemiology, chemotherapy, rorphology, and metabolism, Vol. 1, Academic Press, 1980.
|
11 |
J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.
|
12 |
S. Mandal, R. R. Sarkar, and S. Sinha, Mathematical models of malaria - a review, Malaria Journal 10 (2011), 1-19.
DOI
|
13 |
J. Li, Z. Teng, and L. Zhang, Stability and bifurcation in a vector-bias model of malaria transmission with delay, Math. Comput. Simulation 152 (2018), 15-34.
DOI
|
14 |
Z. Ma and J. Li, Dynamical Modeling and Analysis of Epidemics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
|
15 |
A. Kammanee, Mathematical model of transmission of Plasmodium vivax malaria, Master's thesis, Mahidol University, Thailand, 2002.
|
16 |
J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976.
|
17 |
J. E. Marsden and M. McCracken, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambrigde, 1981.
|
18 |
P. Pongsumpun and I. Tang, Transmission model for Plasmodium vivax malaria: conditions for bifurcation, International J. Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 1 (2007), 58-65.
|
19 |
H. Wan and J. Cui, A malaria model with two delays, Discrete Dyn. Nat. Soc. 2013 (2013), Art. ID 601265, 8 pp.
|
20 |
G. Virk, Runge Kutta method for delay-differential systems, IEE Proceedings D: Control Theory and Applications 132 (1985), no. 3, 119-123.
|
21 |
X. Wang and X.-Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math. 77 (2017), no. 1, 181-201.
DOI
|
22 |
R. Ross, The Prevention of Malaria, John Murray, 1911.
|
23 |
H.-M. Wei, X.-Z. Li, and M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl. 342 (2008), no. 2, 895-908.
DOI
|