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Abstract. This research is focused on a continuous epidemic model of
transmission of Plasmodium vivax malaria with a time delay. The model

is represented as a system of ordinary differential equations with delay.

There are two equilibria, which are the disease-free state and the endemic
equilibrium, depending on the basic reproduction number, R0, which is

calculated and decreases with the time delay. Moreover, the disease-free
equilibrium is locally asymptotically stable if R0 < 1. If R0 > 1, a unique

endemic steady state exists and is locally stable. Furthermore, Hopf

bifurcation is applied to determine the conditions for periodic solutions.

1. Introduction

Malaria is a major public health problem in many countries. The malaria
disease is due to a protozoan parasite from the genus Plasmodium, and is
transmitted by infected Anopheles mosquitoes. Moreover, the malaria parasite
can be found in several types of mammals. Malaria in humans is caused by
four types of malaria parasites: Plasmodium falciparum, Plasmodium vivax,
Plasmodium malariae and Plasmodium ovale [5]. Most deaths from malaria
are due to Plasmodium falciparum [15]. However, in this research, we focus
on the type of malaria caused by Plasmodium vivax, since the resulting cases
can present a latent infection (apparent recovery) and a subsequent relapse.
In other words, a patient formerly infected by Plasmodium vivax can appear
cured but may become infected again without any mosquito bites.

The Plasmodium vivax has a more complicated life cycle than the other
malaria parasites. After an infected mosquito bites a human, Plasmodium
vivax malaria is generated in the bloodstream in the sporozoite form. The
sporozoites move to the liver and their cells divide generating merozoite and
hypnozoite forms. Illness occurs when the merozoites invade the red blood cells.
The clinical symptoms include fever, pain, chills, and sweats. Furthermore, the

Received April 20, 2018; Revised September 21, 2018; Accepted February 20, 2019.
2010 Mathematics Subject Classification. 00A71, 65L80, 92B05, 37C75.
Key words and phrases. Plasmodium vivax malaria, basic reproduction number, locally

stable, Hope bifurcation, time delay.

c©2019 Korean Mathematical Society

685



686 A. KAMMANEE AND O. TANSUIY

hypnozoites lay dormant in the liver and cause no symptoms. However, if the
patient is weak, the hypnozoites evolve to merozoites, and the patient again
will suffer the symptoms. This behavior is unique to Plasmodium vivax [10].

For several decades, numerous mathematical models have been developed
and applied to comprehensively describe the transmission of malaria in human
populations. One of the first well-known models was created by Ross [1, 19]
who investigated the Plasmodium falciparum malaria. Ross constructed an
uncomplicated model in the form of ordinary differential equations, in which
the human population is divided into susceptible and infected compartments.

The first mathematical model to describe the transmission of Plasmodium
vivax is in [8]. In this research, the human population was partitioned into four
categories, namely susceptible, infected, dormant and recovered populations.
The work focused on the basic reproduction number, R0, as an indicator of equi-
librium. Furthermore, two equilibrium points were obtained, for the disease-
free and the endemic states. However, the stability analysis was not explored
in this work. Subsequently, in order to pursue stability analysis, Kammanee [7]
developed a mathematical model of transmission of Plasmodium vivax malaria
where the human population is divided into three categories, with susceptible,
infected and dormant disease statuses. Moreover, the mosquitoes, acting as
disease vectors, fall into two classes: susceptible and infected mosquitoes. The
chief assumption of this model is that an infected patient infects a susceptible
mosquito when it bites. The basic reproduction number was also investigated.
Two equilibrium points, for the disease-free and the endemic states, were also
obtained, now with the stability analysis determined by R0.

Later, Huo and Qiu [6] constructed a mathematical model of malaria trans-
mission with relapse. The basic reproduction number was computed by the
next generation matrix method. Moreover, the disease-free equilibrium was
proved to be globally asymptotically stable if R0 ≤ 1, and the system was
uniformly persistent if R0 > 1.

The aforementioned models have however not been taken into account the
time delay nature of a disease transmission. For malaria transmission, in gen-
eral, there are two categories of time delay which can be introduced in a model.
The first time delay is due to the extrinsic incubation period which occurs in
mosquitoes. This is time taken the parasites to produce sporozoites and move
to the mosquito’s salivary glands. The second one is the intrinsic incubation
period in the patients which is the period that sporozoites relocate to the liver
of the patient and engender merozoites and hypnozoites, see [13]. One of the
best work on the time delay in disease transmission is that of Wei et al. [23]
who have formulated an epidemic model of a vector-borne disease with time
delay. The basic reproduction number was assessed as an indicator of equilib-
rium stability. Furthermore, periodic solutions were considered through Hopf
bifurcations.

Hence, for a reasonable malaria model, time delay should be taken into ac-
count. There are mathematical models of malaria with time delay in literature,
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for example, Chamchod and Britton [2] focused on a dynamical system for Plas-
modium falciparum malaria which includes the extrinsic incubation period in
the model. Later, Wan and Cui [21] have constructed a mathematical model of
Plasmodium falciparum malaria with two time delays, namely the extrinsic and
intrinsic incubation period. They found that the basic reproduction number
decreases with the two time delays. In addition, Wang and Zhao [22] presented
a malaria model which takes into account the climate factors, the extrinsic
incubation period, and the vector-bias effect.

For Plasmodium vivax malaria, Pongsumpun and Tang [18] have studied a
mathematical model for Plasmodium vivax malaria with a constant delay in
the mosquito compartment. Two equilibrium points, which are the disease-
free state and the endemic state, were found. Furthermore, the numerical
simulations showed limit cycles.

The aim of our work is to explore the inclusion of time delay in the hu-
man compartment. Based on the model of [7], we shall introduce the intrinsic
incubation period to the model. As we shall see later, this has a beneficial
feature of the existence of a period solution, which was not found in the model
presented in [7], without time delay. The periodic behavior in the transmission
of Plasmodium vivax malaria is evidenced in the work of Kwak et al. [11] who
have found that the number of patients is most commonly high in July and
August during 2005–2009.

In order to improve the model, we apply an intrinsic incubation period to a
model. This paper consists of five sections. In the next section, a mathematical
model of Plasmodium vivax malaria with delay is constructed. The existence
and uniqueness of equilibria are considered in Section 3. Moreover, the Hopf
bifurcation analysis is also employed in this section. In order to demonstrate
some theorems in Section 3, the numerical examples are presented in Section
4. Finally, in the last section, we provide some conclusion and discussion.

2. Mathematical model

In this section, we construct a mathematical model in order to study effects
of the incubation period in human on the basic reproduction number. The
model is based on SIRS for the human population and SI for the mosquito
population, so we create an SIRS-SI model for the transmission of Plasmodium
vivax malaria. In our model for the transmission of Plasmodium vivax, the
host population (Nh) is divided into three compartments: susceptible (S′h),
infected (I ′h) and dormant (D′h) population. Due to the fact that the immune
system of a human can eliminate the disease, dormant cases can transform
to susceptible. Infected cases can become dormant when the hypnozoites lie
latently in the liver. Moreover, the mosquito vector population comprises two
categories: susceptible (S′v) and infected (I ′v). An infected mosquito is a carrier
transmitting the pathogen into susceptible human population. We also assume
that a new bite by an infected vector (mosquito) is unable to transform person
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in the dormant compartment to an infected case. Moreover, an uninfected
vector cannot become an infected mosquito by biting a person in the dormant
group [7, 8, 18]. Furthermore, some infected patients can become susceptible
(cured) when treated by doctors.
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Figure 1. Flows in a compartmental model for the transmis-
sion of Plasmodium vivax malaria

A flowchart of the transmission of Plasmodium vivax is shown in Figure 1. The
balance equation requires that the rate of change for any compartment is the
rate of entering it minus the rate of leaving it (there is no internal generation,
positive or negative). In the model, we assume that all parameters are nonneg-
ative real numbers: λ is the natural birth rate; µh is the natural mortality rate;
r1 is the rate at which a person in the dormant category transforms to infected
(without a bite); r−12 is the average life time for the parasite producing the
illness; is the rate at which the immunity system can erase all parasites in the
liver. Finally α is the probability of an infected patient becoming susceptible.
Now we focus on the parameter γ′h, which is the transmission rate at which
the Plasmodium vivax parasite is contracted from an infected mosquito by a
susceptible person. In 1998, Esteva et al. [4] have defined as

(1) γ′h = b
βh

Nh + p
,

where b is the mean count of bites per mosquito per time; p is the population
count of other animal species that the mosquito can feed on; and βh is the
probability that Plasmodium vivax goes to the blood stream on mosquito bite
and thrives in the human.

We introduced a time delay into the model in [7], to represent the incubation
time in humans, τ . A susceptible individual infected by a mosquito will not
become infectious until τ time units later. During the incubation period, we as-
sume that the human cannot recover. The term e−µhτ expresses the probability
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of survival of the population during incubation phase, see [14]. Therefore, the
incidence term of infectious mosquitoes is modified to γ′hI

′
v(t−τ)S′h(t−τ)e−µhτ .

From above assumptions, the model is

dS′h
dt

= λNh + (1− λ)r1I
′
h + r3D

′
h − γ′hI ′v(t− τ)S′h(t− τ)e−µhτ − µhS′h,(2)

dI ′h
dt

= γ′hI
′
v(t− τ)S′h(t− τ)e−µhτ + r2D

′
h − (µh + r1)I ′h,(3)

dD′h
dt

= αr1I
′
h − (µh + r2 + r3)D′h,(4)

dS′v
dt

= A− γ′vS′vI ′h − µvS′v,(5)

dI ′v
dt

= γ′vS
′
vI
′
h − µvI ′v.(6)

The female Anopheles lays abundant eggs giving birth to larvae; however,
only a small number of the larvae develop adults. Thus the recruitment rate
A is not equal to λvNv, where λv is the natural birth rate of mosquitoes and
Nv is the number of mosquitoes. Moreover, γ′v is the transmission rate at
which susceptible mosquitoes biting an infected human become infected carrier
vectors.

At the equilibrium state, we found that Nv = A
µv
. Now we normalize all

variables as Sh =
S′h
Nh

, Ih =
I′h
Nh

, Dh =
D′h
Nh

, Sv =
S′vµv
A and Iv =

I′vµv
A . For

biological reasons, the solutions must be non-negative. Then the domain of the
solutions is

(7) Λ = {(Sh, Ih, Dh, Sv, Iv) ∈ R5
+ |Sh + Ih +Dh = 1 and Sv + Iv = 1},

where R5
+ denoted the non-negative cone of R5. Since the right-hand sides of

(2)-(6) are continuous, the unique solution exists on the domain.
Due to (7), our model equations (2)-(6) correspond to the dynamical system

dIh
dt

= γhIv(t− τ)(1− Ih(t− τ)−Dh(t− τ))e−µhτ + r2Dh

− (µh + r1)Ih,(8)

dDh

dt
= αr1Ih − (µh + r2 + r3)Dh,(9)

dIv
dt

= γvSvIh − µvIv.(10)

The solutions for Sh and Sv are given by Sh = 1 − Ih −Dh and Sv = 1 − Iv,
respectively.

The reproduction number or the contact number [14,23] is defined by

(11) R0 =
(µh + r2 + r3)γhγve

−µhτ

µv[(r1 + µh)(µh + r2 + r3)− αr1r2]
.



690 A. KAMMANEE AND O. TANSUIY

It is the average number of secondary infections that a single infectious in-
dividual generates in a susceptible population of hosts and vectors. To see
this notice that µh+r2+r3

(r1+µh)(µh+r2+r3)−αr1r2 is the average time that a patient is

infectious. Moreover, γv
µh+r2+r3

(r1+µh)(µh+r2+r3)−αr1r2 is the average rate of a sus-

ceptible mosquito being infected by biting an infectious person. Due to the
incubation period τ in humans, during which some of them may die, a sin-
gle infected mosquito can transmit the illness to γhe−µhτ/µv hosts. Hence,
the total number of secondary cases is the basic reproduction number R0 =

(µh+r2+r3)γhγve
−µhτ

µv[(r1+µh)(µh+r2+r3)−αr1r2] .

3. Existence and uniqueness of equilibria

Let E = (I∗h, D
∗
h, I
∗
v ) be an equilibrium point of the model. In order to

obtain an equilibrium point, the right-hand sides in (8)-(10) are set to zero (at
equilibrium the rates of change are null). Now we have

D∗h =
αr1

µh + r2 + r3
I∗h and I∗v =

γv
γvIh + µv

I∗h,

where I∗h is computed as

(12)

γheµhτ
(

γvI
∗
h

γvI∗h + µv

)(
1− I∗h −

αr1I
∗
h

µh + r2 + r3

)
+ r2I

∗
h

(
αr1

µh + r2 + r3

)
− (µh + r1)I∗h = 0.

It is clear that there are two solutions to (12). One of them is I∗h = 0
giving the disease-free equilibrium E0 = (0, 0, 0). If I∗h 6= 0, then we obtain the
endemic state E1 = (I∗h, D

∗
h, I
∗
v ) where

I∗h =
R0 − 1

R0M

with M = 1 + αr1(γh−r2e−µhτ )
γh(µh+r2+r3)

+ (µh+r1)e
−µhτ

γh
.

3.1. Local stability of the disease-free state

In this section, we focus on the local stability of the disease-free equilibrium
E0 from the delay differential equation model.

Theorem 3.1. If R0 < 1, then the disease-free equilibrium E0 is locally asymp-
totically stable. Moreover, the disease-free equilibrium is unstable if R0 > 1.

Proof. For τ = 0, the proof has already been given in [7]. Therefore, we only
consider the case τ > 0. First, assume that R0 > 1. Linearizing the system
(8)-(10) about E0, the characteristic equation is

λ3 + a1λ
2 + a2λ = µv[αr1r2 − (µh + r1)(µh + r2 + r3)]

+ [γvγhλe−µhτ + γvγh(µh + r2 + r3)e−µhτ ]e−λτ ,(13)
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where

a1 = (µh + r2 + r3) + µv − (µh + r1),

a2 = (µh + r1)(µh + r2 + r3) + (µh + r1)µv + (µh + r2 + r3)µv − αr1r2.
We have to show that one solution to the characteristic equation is positive.

We assume that λ is real. Denote the left-hand side of (13) by F1(λ) and the
right-hand side by G1(λ). We can see that F1(0) = 0 and limλ→∞ F1(λ) =∞.
Next, it is clear that G1(0) = (R0 − 1)µv[(µh + r1)(µh + r2 + r3)− αr1r2] > 0

and G1(λ) decreases with λ. Therefore for some λ = λ̂ > 0, graphs of the
two functions must intersect, by the intermediate value theorem applied from
0 to some large value. Hence, at least one solution to (13) is positive, and the
disease-free state is unstable when R0 > 1.

Now we focus on the case R0 < 1. Since F1(λ) is an increasing function for
λ ≥ 0 while G1(λ) is decreasing with G1(0) < 0, the graphs cannot intersect
with λ > 0. Hence, equation (13) does not have a non-negative real root.
There are two possible cases for the roots of (13). The first one is that all
roots are negative real numbers, and the other is having a pair of complex
conjugate roots. In the first case, the disease-free state is stable. In the case
of complex conjugate roots, this pair must cross the imaginary axis to provide
non-negative real parts. Therefore, the characteristic equation (13) must have
a pair of purely imaginary solutions for some τ > 0. Without loss of generality,
we assume that ω > 0 and let λ = iω be a root of (13). Thus we have

−ω3i− a1ω2 + a2ωi− µv[αr1r2 − (µh + r1)(µh + r2 + r3)]

− [γvγhe−µhτωi+ γvγh(µh + r2 + r3)e−µhτ ]e−λτ [cosωτ + i sinωτ ] = 0.

Considering the real and imaginary parts, we get the following equations:

− ω3 + a2ω(14)

= ωγhγve
−µhτ cos(ωτ)− γhγv(µv + r2 + r3)e−µhτ sin(ωτ),

− a1ω2 − µv[αr1r2 − (µh + r1)(µh + r2 + r3)](15)

= ωγhγve
−µhτ sin(ωτ) + γhγv(µ+ r2 + r3)e−µhτ cos(ωτ).

To get rid of the trigonometric functions, we square both sides of each equation
and then add them together, to get an equation with a polynomial of degree
six in ω:

ω6 + (a21 − 2a2)ω4

+ [a22 + 2a1µv(αr1r2 − (µh + r1)(µh + r2 + r3))− γ2hγ2ve−2µhτ ]ω2

+ µ2
v[αr1r2 − (µh + r1)(µh + r2 + r3)]2 − γ2hγ2v(µh + r2 + r3)2e−2µhτ = 0.

Let z = ω2 and the above equation becomes

(16) z3 + b1z
2 + b2z + b3 = 0,
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where

b1 = (a21 − 2a2),

b2 = [a22 + 2a1µv(αr1r2 − (µh + r1)(µh + r2 + r3))− γ2hγ2ve−2µhτ ],

b3 = µ2
v[αr1r2 − (µh + r1)(µh + r2 + r3)]2 − γ2hγ2v(µh + r2 + r3)2e−2µhτ ,

= µ2
v[αr1r2 − (µh + r1)(µh + r2 + r3)]2(1−R2

0).

Since R0 < 1, it is easy to see that b1, b2 and b3 > 0. By Descartes’ rule of signs,
equation (16) has no positive real root. Moreover, since, by direct computation
we can show that b1b2 − b3 > 0, by the Routh-Hurwitz criteria equation (16)
has complex conjugate roots with negative real parts. Therefore, there is no
real ω with iω a solution of the characteristic equation (13). By Rouché’s
theorem [12], the real parts of all the roots of the characteristic equation are
negative, for any value of the delay τ ≥ 0. We deduce that the disease-free
state is asymptotically locally stable if R0 < 1. �

3.2. Local stability of the endemic state

In this section, we assume that R0 > 1, and show that an endemic equilib-
rium exits. Furthermore, we will also demonstrate a Hopf bifurcation by using
the time delay τ as the bifurcation parameter. Like for the disease-free state,
we linearize the model (8)-(10) about the point E1. The characteristic equation
is

(17) λ3 + a1λ
2 + a2λ+ a3 = −e−λτ (a4λ

2 + a5λ+ a6),

where

a1 = (µh + r1) + (µh + r2 + r3) + (γvI
∗
h + µv),

a2 = (µh + r1)(µh + r2 + r3 + γvI
∗
h + µv) + (µh + r2 + r3)(γvI

∗
h + µv)

− αr1r2,
a3 = ((µh + r1)(µh + r2 + r3)− αr1r2(γvI

∗
h + µv),

a4 = − γhI∗he−µhτ ,

a5 = (1− I∗h −D∗h)(1− I∗v )e−µhτ − αr1γhI∗he−µhτ

− a4[(µh + r2 + r3) + (γvI
∗
h + µv)],

a6 = (µh + r2 + r3)(1− I∗h −D∗h)(1− I∗v )e−µhτ − αr1γhI∗he−µhτ(γvI
∗
h + µv)

− a4(µh + r2 + r3)(γvI
∗
h + µv).

In the case τ = 0, the proof is available in [7], so here we consider the case
τ > 0. We restate equation (17) by moving the positive terms on the right-hand
side to the left-hand side. Then, we obtain:

(18) λ3 + a1λ
2 + a2λ+ a3 = eλτ (a4λ

2 + a5λ+ a6),

where

a2 = a2 − eλτ (1− I∗h −D∗h)(1− I∗v )e−µhτ ,
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a3 = a3 − eλτ (µh + r2 + r3)(1− I∗h −D∗h)(1− I∗v )e−µhτ ,

a5 = a5 − eλτ (1− I∗h −D∗h)(1− I∗v )e−µhτ ,

a6 = a6 − eλτ (µh + r2 + r3)(1− I∗h −D∗h)(1− I∗v )e−µhτ .

It is clear that a1 > 0, a2 > and a3 > 0 for all λ ≥ 0. Let F2(λ) be the
left-hand side of (18) and G2(λ) be its right-hand side. Since, F2(λ) > 0 for all
λ ≥ 0 while G2(λ) < 0 for all λ ≥ 0, there is no intersection point for λ ≥ 0.
Hence, there are no non-negative real roots. Now we assume that the solution
of (17) is pure imaginary, say, λ = iω with ω > 0. Substituting λ = iω in (17),
we obtain

(19) −iω3 − a1ω2 + a2ωi+ a3 = (−a2ω2 + ia5ω + a6)(cos(ωτ) + i sin(ωτ)).

Separating the real and imaginary parts, we have

a2ω − ω3 = a5ω cos(ωτ)− (a6 − a4ω2) sin(ωτ),(20)

a3 − a1ω2 = (a6 − a4ω2) cos(ωτ) + a5ω sin(ωτ).(21)

In order to eliminate the trigonometric terms, we square these equations and
then sum them together. This gives a polynomial in ω of degree six:

(22) ω6 + (a21 − 2a2 − a24)ω4 + (a22 − 2a1a3 + 2a4a6 − a25)ω2 + (a23 − a26) = 0.

By setting z = ω2, we can reduce the degree of polynomial equation. Then we
have

(23) h(z) = z3 + b1z
2
2 + b2z + b3 = 0,

where

b1 = a21 − 2a2 − a24,
b2 = a22 − 2a1a3 + 2a4a6 − a25,
b3 = a23 − a26.

In order to prove that the endemic state E1 is locally stable, we must demon-
strate that there is no positive solution for equation (23).

Lemma 3.2. If one of the following conditions holds:

(1) b1 ≥ 0, b2 ≥ 0 and b3 ≥ 0,

(2) b3 ≥ 0 and h(z1) > 0 where z1 =
−b1+
√
b21−3b2

3 ,

then there is no positive root of the equation (23).

Proof. If the first condition holds, then the proof is clear by applying Descartes’
rule of signs. Next we consider the case with the second condition is satisfied.
The y-intercept is (0, b3), which is above the x-axis, and the local minimum
point (z1, h(z1)) is also above the x-axis. Therefore, there is no x-intercept at
any x > 0. �
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If the coefficients in (23) satisfy assumptions of the above Lemma, there is
no root iω for (17). Therefore, the real parts of all the eigenvalues of (17)
are negative, for any τ ≥ 0 by Rouché’s theorem [12]. Therefore, we get the
following theorem.

Theorem 3.3. If R0 > 1 and the hypothesis of Lemma 3.2 is satisfied, then
the endemic equilibrium E1 is asymptotically local stable for all τ ≥ 0.

3.3. Hopf bifurcation analysis

By Theorem 3.3, it is clear that if all parameters satisfy the conditions
in Lemma 3.2, then the endemic state is asymptotically stable for any time
delay. Nevertheless, if the conditions are not satisfied, then stability of the
endemic equilibrium may depend on the time delay. Therefore, some time
delays may cause oscillations. When some assumptions made do not hold, for
example b3 < 0, then equation (23) can have at least one positive root, say
κ0. Furthermore, then there exists a purely imaginary λ = iω0 = i

√
κ0 as

a solution of the characteristic equation (17). We found oscillating solutions
numerically, and in this section we focus on Hopf bifurcation analysis.

We chose the time delay τ as the bifurcation parameter. Let λ(τ) = ρ(τ) +
iω(τ) be an eigenvalue of (17). Assuming ω0 > 0, we set ρ(τ0) = 0 and ω(τ0) as
initial values matching the bifurcation parameter τ0. In order to find values of
τ , we eliminate the sine functions in (20) and (21), because the range of arccos
is positive. Then we obtain

(24) τk =
1

ω0
arccos

[
(a1a4 − a5)ω4

0 + (a2a5 − a3a4 − a1a6)ω2
0 + a3a6

a25ω
2
0 + (a6 − a4ω2

0)2

]
+

2kπ

ω0

for k ∈ N.
Due to continuity of Re(λ(τ)), when the real part of λ(τ) changes from

negative (τ < τ0) to positive (τ > τ0), so does the equilibrium point, if the
transversality condition

(25)
dRe(λ(τ))

dτ

∣∣∣∣
τ=τ0

6= 0

holds. Furthermore, a Hopf bifurcation happens while τ passes through the
bifurcation point τ0, see [9].

Theorem 3.4. Let ω0 be the largest positive simple root of (22). Then iω(τ0) =
iω0 is a simple root of (17) and λ(τ) = ρ(τ)+iω(τ) is differentiable with respect
to τ in some open ball B(τ0, ε) for some ε > 0.

The proof of Theorem 3.4 has been given in [16].

Lemma 3.5. Let c be the largest real solution of

(26) g(x) = x3 + αx2 + βx+ γ = 0.

Then g′(c) > 0.
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Proof. There are two cases of its roots. The first case is that all roots are real,
say a < b < c. The g(x) can be rewritten as g(x) = (x − a)(x − b)(x − c). It
is clear that g′(c) = (c− a)(c− b) > 0. The others is complex conjugate roots,
say a ± bi where b > 0, and one real root, say c. Then the other form of g(x)
is g(x) = ((x− a)2 + b)(x− c). Now we have g′(c) = (c− a)2 + b > 0. �

We will apply the previous Lemma to show that d
dτRe(λ(τ))|τ=τ0 > 0. On

taking the derivative with respect to τ of (17):

dλ

dτ
=

−λe−λτ (a4λ
2 + a5λ+ a6)

(3λ2 + 2a1λ+ a2)− e−λτ (2a4λ+ a5) + τe−λτ (a4λ2 + a5λ+ a6)
.

In order to eliminate the exponential term by applying equation (17), we have(
dλ

dτ

)−1
=

3λ2 + 2a1λ+ a2
−λe−λτ (a4λ2 + a5λ+ a6)

+
2a4λ+ a5

λ(a4λ2 + a5λ+ a6)
− τ

λ

=
2λ3 + a1λ

2 − a3
−λ2(λ3 + a1λ2 + a2λ+ a3)

+
a4λ

2 − a6λ
λ2(a4λ2 + a5λ+ a6)

− τ

λ
.

Hence,

Sign

{
dRe(λ)

dτ

}
λ=iω0

= Sign

{
Re

(
dRe(λ)

dτ

)−1}
λ=iω0

= Sign

{
Re
[

2λ3+a1λ
2+a3

−λ2(λ3+a1λ2+a2λ+a3)

]
λ=iω0

+ Re
[

a4λ
2+a6

λ2(a4λ2+a5λ+a6)

]
λ=iω0

}
= Sign

{
Re
[

−a3−i(2ω3
0+a1ω

2
0)

ω2
0 [(a3−a1ω2

0)+i(a2ω0−ω3
0)]

]
+ Re

[
−a4ω2

0−a6
ω2

0 [(a6−a4ω2
0)+a5ω0i]

]}
= Sign

{
3ω4

0 + 2(a21 − 2a2 + a24)ω2
0 + (a22 − 2a1a3 + 2a4a6 − a25)

(a3 − a1ω2)20 + (a2ω0 − ω3
0)2

}
.(27)

The numerator of the right-hand side of (27) is the derivative of (23) whose the
largest real root is ω0. By Lemma 3.2, we have dReλ

dτ

∣∣
ω=ω0

> 0. Now we can

conclude as follows.

Theorem 3.6. Assume that R0 > 1, and either b3 < 0 or b3 > 0 and h(z1) < 0

where z1 =
−b1+
√
b21−3b2

3 . Let ω0 is the largest positive real root of (23). The
parameter τ0 is defined by

τ0 =
1

ω0
arccos

[
(a1a4 − a5)ω4

0 + (a2a5 − a3a4 − a1a6)ω2
0 + a3a6

a25ω
2
0 + (a6 − a4ω2

0)2

]
.

Then the endemic state E1 is asymptotically stable for τ < τ0 and unstable
for τ ≥ τ0. Moreover, a Hopf bifurcation occurs at τ = τ0. In addition,
there exists a positive number ε such that the our model under study possesses
periodic solutions for τ ∈ (τ0, τ0 + ε).

The periodic solution is a limit cycle in the case of τ ∈ (τ0τ0+ε). The radius
of the cycle will increase with τ , see [3, 16,17].
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4. Numerical implementation

In order to demonstrate the above theorem, we provide some numerical simu-
lations using suitable parameters that satisfy the conditions of the previous sec-
tion. A set of realistic parameters is µh = 0.0000457 year−1 µv = 0.04 year−1,
r1 = 0.077 year−1, r2 = 0.0057 year−1, r3 = 0.005 year−1 see in [7]. However,
an appropriate set of parameters is γh = 1.19 year−1, γv = 0.25 year−1. The
simulation program was implemented in MatLab and employed Runge-Kutta
of order 4 for the delay differential equations, see [20].

In Figure 2, the numerical results from the main model under study are
shown for the case of endemic state where R0 > 1 and τ = 2.5, below the
bifurcation value τ0 = 2.7. In Figure 3, a numerical example with a limit
cycle is demonstrated, namely at the bifurcation point τ0 = 2.7. According
to Theorem 3.6, the solution trajectory tends to a limit cycle surrounding the
endemic point, as a theoretical prediction.
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Figure 2. Computer simulations of the model equations (8)-
(10) demonstrating the case R0 > 1 and τ < τ0 with a stable
endemic state. The plots show time traces of the solution in
(a) (Ih, Dh)-plane (b) (Ih, Iv)-plane, (c) (Dh, Iv)-plane and (d)
plotting Ih(−), Dh(−−), Iv(..) versus t.
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Figure 3. Computer simulations of the model equations (8)-
(10) demonstrating a case with R0 > 1 and τ = τ0 (i.e., the bi-
furcation point) with a limit cycle expected theoretically. The
plots show time traces in (a) (Ih, Dh)-plane (b) (Ih, Iv)-plane,
(c)(Dh, Iv)-plane and (D) plotting Ih(−), Dh(−−), Iv(..) ver-
sus t.

5. Conclusion

A mathematical model for the transmission of Plasmodium vivax with a
constant time delay was constructed. The time delay represents the intrinsic
incubation period which is the time taken for a human from contracting in-
fection to becoming infectious. An analysis of the model equations shows two
equilibria, namely the disease-free equilibrium and the endemic equilibrium.
Furthermore, the basic reproduction number was derived in symbolic form,
and it determines the dynamics of the model: if R0 < 1, the disease-free state
is locally stable and the disease vanishes, while if R0 > 1, a unique endemic
equilibrium occurs and is locally stable. Moreover, the time delay was consid-
ered as a bifurcation parameter. According to Hopf bifurcation analysis, the
endemic equilibrium is locally stable for suitably small time delays. However,
the stability of the endemic state is lost when the time delay increases. One of
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the key features of our model is the existence of a periodic solution, which is
consistent with the behavior of malaria transmission observed in nature.
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