FIGURE 1. Flows in a compartmental model for the transmission of Plasmodium vivax malaria
FIGURE 2. Computer simulations of the model equations (8)-(10) demonstrating the case R0 > 1 and τ < τ0 with a stable endemic state. The plots show time traces of the solution in (a) (Ih, Dh)-plane (b) (Ih, Iv)-plane, (c) (Dh, Iv)-plane and (d) plotting Ih(−), Dh(−−), Iv(..) versus t.
FIGURE 3. Computer simulations of the model equations (8)-(10) demonstrating a case with R0 > 1 and τ = τ0 (i.e., the bi-furcation point) with a limit cycle expected theoretically. The plots show time traces in (a) (Ih, Dh)-plane (b) (Ih, Iv)-plane,(c)(Dh, Iv)-plane and (D) plotting Ih(−), Dh(−−), Iv(..) versus t.
References
- R. Anderson, Infectious Disease of Humans: dynamics and control, Cambridge University Press, Cambrigde, 1991.
- F. Chamchod and N. F. Britton, Analysis of a vector-bias model on malaria transmission, Bull. Math. Biol. 73 (2011), no. 3, 639-657. https://doi.org/10.1007/s11538-010-9545-0
-
M. Chuedoung, W. Sarika, and Y. Lenbury, Dynamical analysis of a nonlinear model for glucose-insulin system incorporating delays and
${\beta}$ -cell compartment, Nonlinear Anal. 2009 (2009), e1048-e1058. - L. Esteva and C. Vargas, Analysis of a dengue disease transmission model, Math. Biosci. 150 (1998), 131-151. https://doi.org/10.1016/S0025-5564(98)10003-2
- M. Gilles and R. Snow, The epidemiology of malaria, in: D. Warrell, H. Gilles (Eds.), Essential malariology, 4th Edition, Arnold, London, 2002.
- H.-F. Huo and G.-M. Qiu, Stability of a mathematical model of malaria transmission with relapse, Abstr. Appl. Anal. 2014 (2014), Art. ID 289349, 9 pp.
- A. Kammanee, Mathematical model of transmission of Plasmodium vivax malaria, Master's thesis, Mahidol University, Thailand, 2002.
- A. Kammanee, N. Kanyamee, and I. M. Tang, The basic reproduction number for transmission of Plasmodium vivax malaria, The Southeast Asian Journal of Tropical Medicine and Public Health 32 (2001), 702-706.
- H. Khalil, Nonliear Systems, 3rd Edition, Prentice Hall, New Jersey, 2002.
- J. Kreier, Malaria: epidemiology, chemotherapy, rorphology, and metabolism, Vol. 1, Academic Press, 1980.
- Y. G. Kwak, H. K. Lee, M. Kim, T. H. Um, and C. R. Cho, Clinical characteristics of vivax malaria and analysis of recurred patients, Infect Chemother 45 (2012), 69-75. https://doi.org/10.3947/ic.2013.45.1.69
- J. P. LaSalle, The Stability of Dynamical Systems, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1976.
- J. Li, Z. Teng, and L. Zhang, Stability and bifurcation in a vector-bias model of malaria transmission with delay, Math. Comput. Simulation 152 (2018), 15-34. https://doi.org/10.1016/j.matcom.2018.04.009
- Z. Ma and J. Li, Dynamical Modeling and Analysis of Epidemics, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
- S. Mandal, R. R. Sarkar, and S. Sinha, Mathematical models of malaria - a review, Malaria Journal 10 (2011), 1-19. https://doi.org/10.1186/1475-2875-10-1
- J. E. Marsden and M. McCracken, The Hopf Bifurcation and Its Applications, Springer-Verlag, New York, 1976.
- J. E. Marsden and M. McCracken, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambrigde, 1981.
- P. Pongsumpun and I. Tang, Transmission model for Plasmodium vivax malaria: conditions for bifurcation, International J. Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering 1 (2007), 58-65.
- R. Ross, The Prevention of Malaria, John Murray, 1911.
- G. Virk, Runge Kutta method for delay-differential systems, IEE Proceedings D: Control Theory and Applications 132 (1985), no. 3, 119-123.
- H. Wan and J. Cui, A malaria model with two delays, Discrete Dyn. Nat. Soc. 2013 (2013), Art. ID 601265, 8 pp.
- X. Wang and X.-Q. Zhao, A periodic vector-bias malaria model with incubation period, SIAM J. Appl. Math. 77 (2017), no. 1, 181-201. https://doi.org/10.1137/15M1046277
- H.-M. Wei, X.-Z. Li, and M. Martcheva, An epidemic model of a vector-borne disease with direct transmission and time delay, J. Math. Anal. Appl. 342 (2008), no. 2, 895-908. https://doi.org/10.1016/j.jmaa.2007.12.058