DOI QR코드

DOI QR Code

Linear Stability Analysis of a Baffled Rocket Combustor

배플이 장착된 로켓 연소기의 선형 안정성 해석

  • Lee, Soo Yong (Rocket Engine Team, Korea Aerospace Research Institute)
  • Received : 2017.06.15
  • Accepted : 2017.09.26
  • Published : 2018.06.01

Abstract

A simple Crocco's $n-{\tau}$ time delay model and linear analysis of fluid flow coupled with acoustics are combined to investigate the high frequency combustion instability in the combustion chamber of LOX/hydrocarbon engines. The partial differential equation of the velocity potential is separated into ordinary differential equations, and eigenvalues that correspond to tangential resonance modes in the cylindrical chamber are determined. A general solution is obtained by solving the differential equation in the axial direction, and boundary conditions at the injector face and nozzle entrance are applied in order to calculate the chamber admittance. Frequency analysis of the transfer function is used to evaluate the stability of system. Stability margin is determined from the system gain and phase angle for the desired frequency range of 1T mode. The chamber model with variable baffle length and configurations are also considered in order to enhance the 1T mode stability of the combustion chamber.

액체산소 및 탄화수소를 사용하는 연소기의 고주파 연소불안정을 해석하기 위해 단순모델로서 Crocco의 $n-{\tau}$ 시간지연 연소모델을 적용하고, 음향과 커플된 연소기 내 유동에 대해 선형해석을 수행하였다. 변수분리를 통해 편미분 포텐셜함수 식을 원통좌표계 미분방정식으로 만들고, 연소기의 접선방향 공진모드에 대한 고유 값을 계산하였다. 분사면 및 노즐입구를 경계조건으로 적용하여 미분식의 해를 구했다. 시스템의 안정성 판정을 위해 전달함수를 주파수 해석 하였으며, 관심 영역 주파수인 1T 모드 주변 주파수에서 시스템 게인 및 위상각으로 안정성 여유를 평가하였다. 또한 1T 모드 안정성 향상을 위해 배플 길이 및 형상에 대한 영향을 평가하였다.

Keywords

References

  1. Yi, Y., Hong, M., and Lee, S.Y., "Experimental Study on the Merged Angle of Mixed-Interaction Regions of Sprays from Two Pressure-Swirl Injectors," Journal of ILASS-KOREA, Vol. 16, No. 4, pp. 195-200, 2011.
  2. Bazarov, V., and Yang. V., "Liquid -Propellant Rocket Engine Injector Dynamics," Journal of Propulsion and Power, Vol. 14, No. 5, pp. 797-806, 1998. https://doi.org/10.2514/2.5343
  3. Kim, D., Im, J., Koh, Hl, and Yoon, Y., "Effect of Ambient Gas Density on Spray Characteristics of Swirling Liquid Sheets," Journal of Propulsion and Power, Vol 23, No.3, pp.603-611, 2007. https://doi.org/10.2514/1.20161
  4. Fang, J., "Application of Combustion Time-lag Theory to Combustion Stability Analysis of Liquid and Gaseous Propellant Rocket Engines", 22nd Aerospace Science Meeting, Reno, NV USA, AIAA paper 84-0510, 09-12 Jan. 1984.
  5. Hutt, J.J. and Rocker, M., Liquid Rocket Engine Combustion Instability, Vol. 169 Progress in Astronautics and Aeronautics, AIAA Inc., Washington, DC, USA, Ch. 12, 1995.
  6. Baer M. R. and Mitchell C. E., "A Theoretical Evaluation of Rigid Baffles in Suppression of Combustion Instability," Colorado State University, Fort Collins, Colorado, USA, NASA CR-134986, 1976.
  7. Mitchell, C. E., Liquid Rocket Engine Combustion Instability, Vol. 169 Progress in Astronautics and Aeronautics, AIAA Inc., Washington, DC, USA, Ch. 15, 1995.
  8. Nguyen, T. V., "Computer code for use in high frequency combustion stability analyses," Aerojet TechSystems Company, Thermodynamic analysis report 9980:1807, 1988.
  9. Kobayashi, K., Daimon, Y., Iizuka, N., Tamura, H., Mitani, T., and Onodera, T., "Studies on Combustion Instability for Liquid Propellant Rocket Engines," 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, AIAA, July-Aug. 2011.
  10. Schulze, M. and Sattelmayer, T., "A Comparison of Time and Frequency Domain Descriptions of High Frequency Acoustics in Rocket Engines with Focus on Dome Coupling," Aerospace Science and Technology, Vol. 45, pp. 165-173, 2015. https://doi.org/10.1016/j.ast.2015.05.007
  11. Sattelmayer, T., Schmid, M., and Schulze, M., "Impact of Injector Mass Flow Fluctuations on Combustion Dynamics in Liquid Engines," Journal of Spacecraft and Rockets, Vol. 52, No. 5, pp. 1417-1429, 2015. https://doi.org/10.2514/1.A33287