• Title/Summary/Keyword: Deductive mathematics

Search Result 94, Processing Time 0.02 seconds

Reconsideration the construction and implementation of the national curriculum in mathematics (국가 수학 교육 과정의 구성 및 운영에 관한 재고)

  • 서동엽
    • School Mathematics
    • /
    • v.1 no.2
    • /
    • pp.571-588
    • /
    • 1999
  • Our mathematical curriculum has been revised frequently compared to another countries. The frequent revisions may mean that the current curriculum is not so complete in the selected contents of each grade levels. The idea is partially supported by the fact that the didactics of mathematics has both hypothesis-deductive and hypothesis-constructive property. Investigating the items which are used in TIMSS study and based on the relatively common curriculums of 40 more countries, the styles of them are a bit different from those of our textbooks of primary and secondary school. Hence, we consider that the construction and implementation of our mathematical curriculum may be a large scale of experiment for the improved curriculum carried by the nation. Additionally, we propose less compulsive curriculum than the current for minimizing the possible trial and errors.

  • PDF

The Characteristics of Mathematics in Ancient India (고대 인도수학의 특징)

  • Kim, Jong-Myung
    • Journal for History of Mathematics
    • /
    • v.23 no.1
    • /
    • pp.41-52
    • /
    • 2010
  • Ancient Indian mathematical works, all composed in Sanskrit, usually consisted of a section of sturas in which a set of rules or problems were stated with great economy in verse in order to aid memorization by a student. And rules or problems of the mathematics were transmitted both orally and in manuscript form.Indian mathematicians made early contributions to the study of the decimal number system, arithmetic, equations, algebra, geometry and trigonometry. And many Indian mathematicians were appearing one after another in Ancient. This paper is a comparative study of mathematics developments in ancient India and the other ancient civilizations. We have found that the Indian mathematics is quantitative, computational and algorithmic by the principles, but the ancient Greece is axiomatic and deductive mathematics in character. Ancient India and the other ancient civilizations mathematics should be unified to give impetus to further development of mathematics education in future times.

A Modern Reconstruction of the Problems on the Sums of Sequences in MukSaJipSanBup and its Pedagogical Applications (묵사집산법(?思集算法)에 수록된 퇴타개적문(堆?開積門)의 현대적 재구성 및 수학교육적 활용 방안)

  • Yang, Seonghyun
    • Journal for History of Mathematics
    • /
    • v.33 no.1
    • /
    • pp.1-19
    • /
    • 2020
  • Under 2009 Revised Mathematics Curriculum and 2015 Revised Mathematics Curriculum, mathematics teachers can help students inductively express real life problems related to sequences but have difficulties in dealing with problems asking the general terms of the sequences defined inductively due to 'Guidelines for Teaching and Learning'. Because most of textbooks mainly deal with the simple calculation for the sums of sequences, students tend to follow them rather than developing their inductive and deductive reasoning through finding patterns in the sequences. In this study, we reconstruct 8 problems to find the sums of sequences in MukSaJipSanBup which is known as one of the oldest mathematics book of Chosun Dynasty, using the terminology and symbols of the current curriculum. Such kind of problems can be given in textbooks and used for teaching and learning. Using problems in mathematical books of Chosun Dynasty with suitable modifications for teaching and learning is a good method which not only help students feel the usefulness of mathematics but also learn the cultural value of our traditional mathematics and have the pride for it.

A study on the geometric construction task of middle school according to the mathematics curriculums (교육과정에 따른 중학교 작도 과제의 변화 연구)

  • Suh, Boeuk
    • East Asian mathematical journal
    • /
    • v.36 no.4
    • /
    • pp.493-513
    • /
    • 2020
  • The reason for this study is that the learning content of geometric construction in school mathematics is very insufficient. Geometric construction not only enables in-depth understanding of shapes, but also improves deductive proof skills. In school mathematics education, geometric construction is a very important learning factor, and educational significance is very high in that it can develop reasoning skills essential to the future society. Nevertheless, the reduction of geometric construction learning content in Korean curriculum and mathematics textbooks is against the times. Therefore, the purpose of this study is to analyze the transition of geometric construction learning contents in middle school mathematics curriculum and mathematics textbooks. In order to achieve the purpose of this study, the following studies were conducted. First, we analyze the characteristics of geometric construction according to changes in curriculum and textbooks. Second, we develop a framework for analyzing geometric construction tasks. Third, we explore geometric construction tasks according to the developed framework. Through this, it is expected to provide significant implications for the geometric areas of the new middle school curriculum that will be developed in the future.

A study on historico-genetic principle of teaching and learning in mathematics (역사발생적 수학 학습-지도 원리에 관한 연구)

  • 우정호;민세영
    • Journal of Educational Research in Mathematics
    • /
    • v.12 no.3
    • /
    • pp.409-424
    • /
    • 2002
  • The historico-genetic principle has been advocated continuously, as an alternative one to the traditional deductive method of teaching and learning mathematics, by Clairaut, Cajori, Smith, Klein, Poincar$\'{e}$, La Cour, Branford, Toeplitz, etc. since 18C. And recently we could find various studies in relation to the historico-genetic principle. Lakatos', Freudenthal's, and Brousseau's are representative in them. But they are different from the previous historico- genetic principle in many aspects. In this study, the previous historico- genetic principle is called as classical historico- genetic principle and the other one as modern historico-genetic principle. This study shows that the differences between them arise from the historical views of mathematics and the development of the theories of mathematics education. Dewey thinks that education is a constant reconstruction of experience. This study shows the historico-genetic principle could us embody the Dewey's psycological method. Bruner's discipline-centered curriculum based on Piaget's genetic epistemology insists on teaching mathematics in the reverse order of historical genesis. This study shows the real understaning the structure of knowledge could not neglect the connection with histogenesis of them. This study shows the historico-genetic principle could help us realize Bruner's point of view on the teaching of the structure of mathematical knowledge. In this study, on the basis of the examination of the development of the historico-genetic principle, we try to stipulate the principle more clearly, and we also try to present teaching unit for the logarithm according to the historico- genetic principle.

  • PDF

Analysis on the Perception Discrepancy between Teacher's Teaching Goal and Students' Learning Goal in the Elementary School Mathematics Class for the Gifted (초등수학영재학급에서 교수자의 지도 목표와 학습자의 학습 목표 인식 간극 분석)

  • Lim, Seoung Jae;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.19 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • This study investigated the analysis of examples that gifted students' realizing the learning objectives through teaching method of the teacher's questions and advice. 6 gifted students were selected to be examined with 'magic square' in class. The teacher emphasized the learning objectives without directly proposing. Whereas, the teacher proposed the learning objectives by questioning and giving advice to students. After the class, the 6 gifted students were surveyed to answer about realizing the learning objectives of mathematics (about contents, process, and attitude in mathematics learning objectives). Mathematical gifted students thought about the process that consists of deductive thinking, analogic thinking, extensive thinking, creative thinking, and critical thinking. But, they underestimated the deductive thinking. So the teacher should develop the questions and advice to teach the mathematical gifted students according to the level of them. The high level of mathematical gifted students were able to realize the value and the importance of the mathematical attitude, while the low level of mathematical gifted students were able to realize them little. For this reason, the teacher should apprehend the level of the students, and propose materials and contents of the learning. The teacher should also make the gifted students realize value, will, and personality of mathematics by questions and advice. Lastly, like it is needed in general classes, there should be a constant researches and improvements about questions of the teacher that are appropriate to each student's learning abilities and cognition ability.

A Comparative Study on Euclid's Elements and Pardies' Elements (Euclid 원론과 Pardies 원론의 비교 연구)

  • Chang, Hyewon
    • Journal for History of Mathematics
    • /
    • v.33 no.1
    • /
    • pp.33-53
    • /
    • 2020
  • Euclid's Elements has been considered as the stereotype of logical and deductive approach to mathematics in the history of mathematics. Nonetheless, it has been criticized by its dryness and difficulties for learning. It is worthwhile to noticing mathematicians' struggle for providing some alternatives to Euclid's Elements. One of these alternatives was written by a French scientist, Pardies who called it 'Elemens de Geometrie ou par une methode courte & aisee l'on peut apprendre ce qu'il faut scavoir d'Euclide, d'Archimede, d'Apllonius & les plus belles inventions des anciens & des nouveaux Geometres.' A precedent research presented its historical meaning in traditional mathematics of China and Joseon as well as its didactical meaning in mathematics education with the overview of this book. However, it has a limitation that there isn't elaborate comparison between Euclid's and Pardies'in the aspects of contents as well as the approaching method. This evokes the curiosity enough to encourage this research. So, this research aims to compare Pardies' Elements and Euclid's Elements. Which propositions Pardies selected from Euclid's Elements? How were they restructured in Pardies' Elements? Responding these questions, the researcher confirmed his easy method of learning geometry intended by Pardies.

A Search for the meaningful method of teaching for Correct Understanding of Advanced Mathematics Concepts (고등 수학 개념의 올바른 이해를 위한 유의미한 교수법 탐색)

  • 한길준;우호식
    • The Mathematical Education
    • /
    • v.40 no.2
    • /
    • pp.241-252
    • /
    • 2001
  • Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.

  • PDF

A Questioning Role of Teachers to Formal Justification Process in Generalization of a Pattern Task for the Elementary Gifted Class (초등학교 영재학급 학생들의 형식적 정당화를 돕기 위한 교사 발문의 역할)

  • Oh, Se-Youn;Song, Sang Hun
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.20 no.1
    • /
    • pp.131-148
    • /
    • 2016
  • Mathematical formal justification may be seen as a bridge towards the proof. By requiring the mathematically gifted students to prove the generalized patterned task rather than the implementation of deductive justification, may present challenges for the students. So the research questions are as follow: (1) What are the difficulties the mathematically gifted elementary students may encounter when formal justification were to be shifted into a generalized form from the given patterned challenges? (2) How should the teacher guide the mathematically gifted elementary students' process of transition to formal justification? The conclusions are as follow: (1) In order to implement a formal justification, the recognition of and attitude to justifying took an imperative role. (2) The students will be able to recall previously learned deductive experiment and the procedural steps of that experiment, if the mathematically gifted students possess adequate amount of attitude previously mentioned as the 'mathematical attitude to justify'. In addition, we developed the process of questioning to guide the elementary gifted students to formal justification.