• 제목/요약/키워드: Deductive mathematics

검색결과 95건 처리시간 0.02초

국가 수학 교육 과정의 구성 및 운영에 관한 재고 (Reconsideration the construction and implementation of the national curriculum in mathematics)

  • 서동엽
    • 대한수학교육학회지:학교수학
    • /
    • 제1권2호
    • /
    • pp.571-588
    • /
    • 1999
  • Our mathematical curriculum has been revised frequently compared to another countries. The frequent revisions may mean that the current curriculum is not so complete in the selected contents of each grade levels. The idea is partially supported by the fact that the didactics of mathematics has both hypothesis-deductive and hypothesis-constructive property. Investigating the items which are used in TIMSS study and based on the relatively common curriculums of 40 more countries, the styles of them are a bit different from those of our textbooks of primary and secondary school. Hence, we consider that the construction and implementation of our mathematical curriculum may be a large scale of experiment for the improved curriculum carried by the nation. Additionally, we propose less compulsive curriculum than the current for minimizing the possible trial and errors.

  • PDF

고대 인도수학의 특징 (The Characteristics of Mathematics in Ancient India)

  • 김종명
    • 한국수학사학회지
    • /
    • 제23권1호
    • /
    • pp.41-52
    • /
    • 2010
  • 고대의 인도수학은 산스크리트어로 쓰여 있고, 수학의 법칙이나 문제들은 구전되었거나 필사본의 형태로 경전 속에 포함되어 있으며, 학생들이 암기를 쉽게 할 수 있도록 아주 간결하게 정리되어 있다. 고대 인도의 많은 수학자들은 일찍이 십진법, 계산법, 방정식, 대수학, 기하학, 삼각법 등의 연구에 공헌하였다. 이 논문은 고대 인도수학과 다른 문명권의 수학발전을 비교하였다. 고대 그리스 수학이 공리적이고 연역적이라면, 인도수학은 양적이며 계산적이지만 원리를 가지고 문제를 해결하는 특성이 있다. 고대 인도와 타 문명권의 수학을 비교하는 것은 오늘날 수학교육과 수학사 연구에 의미가 있는 것으로 사료된다.

묵사집산법(?思集算法)에 수록된 퇴타개적문(堆?開積門)의 현대적 재구성 및 수학교육적 활용 방안 (A Modern Reconstruction of the Problems on the Sums of Sequences in MukSaJipSanBup and its Pedagogical Applications)

  • 양성현
    • 한국수학사학회지
    • /
    • 제33권1호
    • /
    • pp.1-19
    • /
    • 2020
  • Under 2009 Revised Mathematics Curriculum and 2015 Revised Mathematics Curriculum, mathematics teachers can help students inductively express real life problems related to sequences but have difficulties in dealing with problems asking the general terms of the sequences defined inductively due to 'Guidelines for Teaching and Learning'. Because most of textbooks mainly deal with the simple calculation for the sums of sequences, students tend to follow them rather than developing their inductive and deductive reasoning through finding patterns in the sequences. In this study, we reconstruct 8 problems to find the sums of sequences in MukSaJipSanBup which is known as one of the oldest mathematics book of Chosun Dynasty, using the terminology and symbols of the current curriculum. Such kind of problems can be given in textbooks and used for teaching and learning. Using problems in mathematical books of Chosun Dynasty with suitable modifications for teaching and learning is a good method which not only help students feel the usefulness of mathematics but also learn the cultural value of our traditional mathematics and have the pride for it.

교육과정에 따른 중학교 작도 과제의 변화 연구 (A study on the geometric construction task of middle school according to the mathematics curriculums)

  • 서보억
    • East Asian mathematical journal
    • /
    • 제36권4호
    • /
    • pp.493-513
    • /
    • 2020
  • The reason for this study is that the learning content of geometric construction in school mathematics is very insufficient. Geometric construction not only enables in-depth understanding of shapes, but also improves deductive proof skills. In school mathematics education, geometric construction is a very important learning factor, and educational significance is very high in that it can develop reasoning skills essential to the future society. Nevertheless, the reduction of geometric construction learning content in Korean curriculum and mathematics textbooks is against the times. Therefore, the purpose of this study is to analyze the transition of geometric construction learning contents in middle school mathematics curriculum and mathematics textbooks. In order to achieve the purpose of this study, the following studies were conducted. First, we analyze the characteristics of geometric construction according to changes in curriculum and textbooks. Second, we develop a framework for analyzing geometric construction tasks. Third, we explore geometric construction tasks according to the developed framework. Through this, it is expected to provide significant implications for the geometric areas of the new middle school curriculum that will be developed in the future.

역사발생적 수학 학습-지도 원리에 관한 연구 (A study on historico-genetic principle of teaching and learning in mathematics)

  • 우정호;민세영
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제12권3호
    • /
    • pp.409-424
    • /
    • 2002
  • The historico-genetic principle has been advocated continuously, as an alternative one to the traditional deductive method of teaching and learning mathematics, by Clairaut, Cajori, Smith, Klein, Poincar$\'{e}$, La Cour, Branford, Toeplitz, etc. since 18C. And recently we could find various studies in relation to the historico-genetic principle. Lakatos', Freudenthal's, and Brousseau's are representative in them. But they are different from the previous historico- genetic principle in many aspects. In this study, the previous historico- genetic principle is called as classical historico- genetic principle and the other one as modern historico-genetic principle. This study shows that the differences between them arise from the historical views of mathematics and the development of the theories of mathematics education. Dewey thinks that education is a constant reconstruction of experience. This study shows the historico-genetic principle could us embody the Dewey's psycological method. Bruner's discipline-centered curriculum based on Piaget's genetic epistemology insists on teaching mathematics in the reverse order of historical genesis. This study shows the real understaning the structure of knowledge could not neglect the connection with histogenesis of them. This study shows the historico-genetic principle could help us realize Bruner's point of view on the teaching of the structure of mathematical knowledge. In this study, on the basis of the examination of the development of the historico-genetic principle, we try to stipulate the principle more clearly, and we also try to present teaching unit for the logarithm according to the historico- genetic principle.

  • PDF

초등수학영재학급에서 교수자의 지도 목표와 학습자의 학습 목표 인식 간극 분석 (Analysis on the Perception Discrepancy between Teacher's Teaching Goal and Students' Learning Goal in the Elementary School Mathematics Class for the Gifted)

  • 임성재;송상헌
    • 한국초등수학교육학회지
    • /
    • 제19권1호
    • /
    • pp.1-16
    • /
    • 2015
  • 본 연구는 영재학급에서 수업 중 교사가 강조하는 지도 목표와 학생들이 인식하는 학습 목표 도달 정도의 차이를 분석해 봄으로써 영재학급에서의 학습 목표 제시 방식을 개선하는 데 목적이 있다. 이를 위해 초등학교 6학년 2개 학급(각 20명씩 총 40명) 학생들의 활동지를 양적으로 분석하였으며, 각 학급 내 성취 수준이 상, 중, 하위권에서 각 1명씩을 대상으로 수업 중 연구자 참여 관찰과 수업 후 개별 면담을 통해 그들의 학습 목표 인식 사례를 질적으로 분석하였다. 학습 목표는 내용면, 과정면, 태도면에서 각각의 하위 요소별로 교사가 사전에 기술해 놓은 것에 대해 교사 자신이 강조한 정도와 학생이 인식한 정도의 간극을 항목별로 차이를 수치화하여 비교하였다. 연구 결과 영재학급 학생들은 내용면보다는 상대적으로 과정면에서 학습 목표에 대한 인식이 낮음을 알 수 있었는데, 전반적으로 연역적 사고, 유추적 사고, 발전적 사고에 있어서 교사의 강조 정도와 인식 정도의 차이를 보였고 특히 유추적 사고에서 학습 목표에 대한 그 인식 정도가 가장 큰 차이를 보였다. 이를 통해 얻게 된 몇 가지 교육적 시사점을 제시하였다.

Euclid 원론과 Pardies 원론의 비교 연구 (A Comparative Study on Euclid's Elements and Pardies' Elements)

  • 장혜원
    • 한국수학사학회지
    • /
    • 제33권1호
    • /
    • pp.33-53
    • /
    • 2020
  • Euclid's Elements has been considered as the stereotype of logical and deductive approach to mathematics in the history of mathematics. Nonetheless, it has been criticized by its dryness and difficulties for learning. It is worthwhile to noticing mathematicians' struggle for providing some alternatives to Euclid's Elements. One of these alternatives was written by a French scientist, Pardies who called it 'Elemens de Geometrie ou par une methode courte & aisee l'on peut apprendre ce qu'il faut scavoir d'Euclide, d'Archimede, d'Apllonius & les plus belles inventions des anciens & des nouveaux Geometres.' A precedent research presented its historical meaning in traditional mathematics of China and Joseon as well as its didactical meaning in mathematics education with the overview of this book. However, it has a limitation that there isn't elaborate comparison between Euclid's and Pardies'in the aspects of contents as well as the approaching method. This evokes the curiosity enough to encourage this research. So, this research aims to compare Pardies' Elements and Euclid's Elements. Which propositions Pardies selected from Euclid's Elements? How were they restructured in Pardies' Elements? Responding these questions, the researcher confirmed his easy method of learning geometry intended by Pardies.

고등 수학 개념의 올바른 이해를 위한 유의미한 교수법 탐색 (A Search for the meaningful method of teaching for Correct Understanding of Advanced Mathematics Concepts)

  • 한길준;우호식
    • 한국수학교육학회지시리즈A:수학교육
    • /
    • 제40권2호
    • /
    • pp.241-252
    • /
    • 2001
  • Many high school students are having difficulties for studying advanced mathematics concepts. It is more complicated than in junior high school and they are losing interest and confidence. In this paper, advanced mathematics concepts are not just basic concepts such as natural numbers, fractions or figures that can be learned through life experience but concepts that are including variables, functions, sets, tangents and limits are more abstract and formal. For the students to understand these ideas is too heavy a burden and so many of the students concentrate their efforts on just memorizing and not understanding. It is necessary to search for a meaningful method of teaching for advanced mathematics that covers deductive methods and symbols. High school teachers are always asking themselves the following question, “How do we help the students to understand the concept clearly and instruct it in a meaningful way?” As a solution we propose the followings : I. To ensure they have the right understanding of concept image involved in the concept definition. II. Put emphasis on the process of making mental representations and the role of intuition. III. To instruct students and understand them as having many chance of the instructional conversation. In conclusion, we studied the meaningful method of teaching with the theory of Ausubel related to the above proposed methods. To understand advanced mathematics concepts correctly, the mutual understanding of both teachers and students is necessary.

  • PDF

초등학교 영재학급 학생들의 형식적 정당화를 돕기 위한 교사 발문의 역할 (A Questioning Role of Teachers to Formal Justification Process in Generalization of a Pattern Task for the Elementary Gifted Class)

  • 오세연;송상헌
    • 한국초등수학교육학회지
    • /
    • 제20권1호
    • /
    • pp.131-148
    • /
    • 2016
  • 본 연구는 초등학교 5학년 영재학급 학생들(8명)이 패턴의 일반화 과제를 해결함에 있어 귀납 추론으로 일반식은 추측하였으나 그에 대한 형식적 정당화로 이행하는 과정에서 겪는 어려움을 분석하고 그 해결을 돕기 위한 교사 발문의 역할 모색과 발문 기법 제안을 목적으로 하였다. 학생들의 형식적 정당화를 돕기 위한 교사 발문 목록들을 3차에 걸친 현장 적용을 통해 확인한 결과, 초등학교 영재학급 학생들은 형식적 정당화로 이행을 할 때 정당화를 시도해야하는 이유, 연역적 탐구에 대한 인식 부족, 유연한 탐구 방법에 대한 심리적 저항감으로 인해 어려움을 겪었다. 면담 분석 결과 학생들이 정당화의 필요성과 귀납적 탐구 결과의 한계를 체감할 수 있도록 교사가 태도면에서 출발하여 방법면과 내용면으로 구체화해갈 수 있도록 체계적인 발문을 준비하는 것이 중요함을 확인할 수 있었다. 이에 따라 내용면에서의 4가지와 절차면에서의 3가지 발문 기법을 제안하면서 논의를 바탕으로 발문 일람표와 그 흐름도를 제시하고 교사 발문의 역할이 주는 교육적 시사점을 논의하였다.