DOI QR코드

DOI QR Code

A Comparative Study on Euclid's Elements and Pardies' Elements

Euclid 원론과 Pardies 원론의 비교 연구

  • Chang, Hyewon (Dept. of Math. Edu., Seoul National Univ. of Edu.)
  • Received : 2019.11.13
  • Accepted : 2020.02.08
  • Published : 2020.02.28

Abstract

Euclid's Elements has been considered as the stereotype of logical and deductive approach to mathematics in the history of mathematics. Nonetheless, it has been criticized by its dryness and difficulties for learning. It is worthwhile to noticing mathematicians' struggle for providing some alternatives to Euclid's Elements. One of these alternatives was written by a French scientist, Pardies who called it 'Elemens de Geometrie ou par une methode courte & aisee l'on peut apprendre ce qu'il faut scavoir d'Euclide, d'Archimede, d'Apllonius & les plus belles inventions des anciens & des nouveaux Geometres.' A precedent research presented its historical meaning in traditional mathematics of China and Joseon as well as its didactical meaning in mathematics education with the overview of this book. However, it has a limitation that there isn't elaborate comparison between Euclid's and Pardies'in the aspects of contents as well as the approaching method. This evokes the curiosity enough to encourage this research. So, this research aims to compare Pardies' Elements and Euclid's Elements. Which propositions Pardies selected from Euclid's Elements? How were they restructured in Pardies' Elements? Responding these questions, the researcher confirmed his easy method of learning geometry intended by Pardies.

Acknowledgement

Supported by : Seoul National University of Education

References

  1. O. BYRNE, The first six books of the elements of euclid: In which coloured diagrams and symbols are used instead of letters for the greater ease of learners, London: William Pickering, 1847.
  2. CHANG, H., A Study on geometrical construction in middle school mathematics, The Journal of Educational Research in Mathematics 7(2) (1997), 327-336.
  3. CHANG H., A study on the historico-genetic principle revealed in Clairaut's , The Journal of Educational Research in Mathematics 13(3) (2003), 351-364.
  4. CHANG, H., Study on the teaching of proofs based on Byrne's elements of Euclid, The Journal of Educational Research in Mathematics 23(2) (2013), 173-192.
  5. CHANG, H. Study on Pardies' , Journal for History of Mathematics 1(6) (2018), 291-313.
  6. A. C. CLAIRAUT, Elemens de geometrie, Gauthier-Billars et Cle, Editeurs, 1741/1920.(translated by CHANG, H. 2018), 장혜원(역), 클레로 기하학원론, 서울: 지오아카데미, 2018.
  7. R. Fitzpatrick (trans.), Euclid's Elements of geometry, http://farside.ph.utexas.edu/Books/Euclid/Elements.pdf, 2008.
  8. T. L. HEATH, The thirteen books of Euclid's Elements, Translated from the text of Heiberb with introduction and commentary, Vol. I, II, III, Cambridge: at the University Press, 1908.
  9. KIM, C., KANG, J., A study on the meaning of construction in Euclid Elements, Journal of the Korean School Mathematics 20(2) (2017), 119-139.
  10. LEE, M. H.(trans.), Euclid's Elements of geometry, 기하학원론, 서울: 교우사, 1997.
  11. J. E. A. N. MAWHIN, Euclide revu par Legendre ou des Elements aux Elements de geometrie, Revue des Questions Scientifiques 183(2-3) (2012), 203-230.
  12. I. G. PARDIES, Elemens de geometrie où par une methode courte & aisee l'on peut apprendre ce qu'il faut scavoir d'Euclide, d'Archimede, d'Apllonius & les plus belles inventions des anciens & des nouveaux Geometres, premier edition, 1671. https://books.google.co.kr/books?id=8z4oAAAAcAAJ&printsec=frontcover&hl=ko&source=gbs_ge_summary_r#v=onepage&q&f=false
  13. I. G. PARDIES, Elemens de geometrie où par une methode courte & aisee l'on peut apprendre ce qu'il faut scavoir d'Euclide, d'Archimede, d'Apllonius & les plus belles inventions des anciens & des nouveaux Geometres, 3eme edition, 1678. https://books.google.co.kr/books?id=SzoPAAAAQAAJ&printsec=frontcover&hl=ko&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false
  14. H. G. STEINER Two kinds of" elements" and the dialectic between synthetic-deductive and analytic-genetic approaches in mathematics, For the Learning of Mathematics 8(3) (1988), 7-15.