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IDEAL THEORY OF PRE-LOGICS BASED ON

N -STRUCTURES

Young Hie Kim and Sun Shin Ahn∗

Abstract. Using N -structures, the notion of an N -ideal in a pre-
logic is introduced. Characterizations of an N -ideal are discussed.
Conditions for an N -structure to be an N -ideal are provided.

1. Introduction

A (crisp) set A in a universe S can be defined in the from of its
characteristic function µA : X → {0, 1} yielding the value 1 for the
elements belonging to the set A and the value 0 for element excluded
from the set A. So far most of the generalization of the crisp set have
been conducted on the unit interval [0, 1] and they are consistent with
the asymmetry observation. In other words, the generalization of the
crisp set to fuzzy sets relied on spreading positive information that fit the
crisp point {1} into the interval [0, 1]. Because no negative meaning of
information is suggested, Jun et al. [3] introduced a new function which
is called a negative-valued function, and constructedN -structures. They
applied N -structures to BCK/BCI-algebras and N -ideals in BCK/BCI-
algebras. I. Chajda and R. Halas [1] introduced the concept of a pre-
logic which is an algebra weaker than a Hilbert algebra (an algebraic
counterpart of intuitionistic logic) but strong enough to have deductive
systems. They also studied algebraic properties of pre-logics and of
lattices of their deductive systems. Young Hie Kim and Sun Shn Ahn
([4]) defined the notion of commutative pre-logic and terminal sections
and investigated some of their properties. In [2], S. S. Ahn and J. K.
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Yoo defined the notion of complicated pre-logic and a special set in a
pre-logic

In this paper, we introduce the notion of an N -ideal in a pre-logic
and investigate several characterizations of an N -ideal. Also we provide
conditions for a an N -structure to be an N -ideal.

2. Preliminaries

We recall some definitions and results (see [1]).

Definition 2.1. By a pre-logic, we mean a triple (X; ·, 1) where X is
a non-empty set, · is a binary operation on X and 1 ∈ X such that the
following identities hold:

(P1) (∀x ∈ X) (x · x = 1),
(P2) (∀x ∈ X) (1 · x = x),
(P3) (∀x ∈ X) (x · (y · z) = (x · y) · (x · z)),
(P4) (∀x, y, z ∈ X) (x · (y · z) = y · (x · z)).

Lemma 2.2. Let (X; ·, 1) be a pre-logic. Then the following hold:

(a) (∀x ∈ X) (x · 1 = 1);
(b) (∀x, y ∈ X) (x · (y · x) = 1);
(c) an order relation ≤ on A defined by

(∀x, y ∈ X) (x ≤ y if and only if x · y = 1)

is a quasiorder on X (i.e., a reflexive and transitive order relation
on X);

(d) 1 ≤ x for all x ∈ X implies x = 1.

Remark 2.3. The quasiorder ≤ of Lemma 2.2(c) is called the induced
quasiorder of a pre-logic X.

Lemma 2.4. Let ≤ be the induced quasiorder of a pre-logic X =
(X; ·, 1) and let x, y, z ∈ X. If x ≤ y, then z · x ≤ z · y and y · z ≤ x · z.
Definition 2.5. Let X = (X; ·, 1) be a pre-logic. A non-empty subset
D of X is called a deductive system of X if the following conditions hold:

(d1) 1 ∈ D,
(d2) if x ∈ D and x · y ∈ D, then y ∈ D.

Definition 2.6. Let X = (X; ·, 1) be a pre-logic. A non-empty subset
I of X is called an ideal of X if the following conditions are satisfied:

(I1) x ∈ X and y ∈ I imply x · y ∈ I;
(I2) x ∈ X and y1, y2 ∈ I imply (y2 · (y1 · x)) · x ∈ I.
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Denote by I(X) the set of all ideals of X.

Theorem 2.7. Let X = (X; ·, 1) be a pre-logic. Then every ideal of X
is a deductive system on X and conversely.

Lemma 2.8. Let X = (X; ·, 1) be a pre-logic and ≤ its induced qua-
siorder. The the following hold:

(a) (∀x, y ∈ X) (x · ((x · y) · y) = 1),
(b) (∀x, y, z ∈ X) ((y · z) · ((x · y) · (x · z)) = 1),
(c) if D is a deductive system of X, a ∈ D, and a ≤ b, then b ∈ D.

3. N -ideals

In what follows, let X denote a pre-logic and let f denote an N -
function on X unless otherwise specified.

Theorem 3.1. A non-empty subset I of a pre-logic X is an ideal of X
if and only if it satisfies the following two conditions:

(I1′) (1 ∈ I);
(I2′) (∀x, z ∈ X)(∀y ∈ I) (x · (y · z) ∈ I ⇒ x · z ∈ I).

Proof. Let I be an ideal of X. Using (P1) and (I1), we have 1 = a ·a ∈ I
for all a ∈ I. We prove the following assertion:

(∗) (∀x ∈ I)(∀y ∈ X)(x · y ∈ I ⇒ y ∈ I).

Let x ∈ I and y ∈ X be such that x · y ∈ I. Then y = 1 · y =
((x · y) · (x · y)) · y ∈ I by (I2). Now, let x, z ∈ X and y ∈ I be such that
x · (y · z) ∈ I. Then y · (x · z) ∈ I by (P4). Since y ∈ I, it follows from
(∗) that x · z ∈ I. Hence (I2′) is valid.

Conversely, assume that (I1′) and (I2′) are valid. Let x ∈ X and
a ∈ I. Then x · (a · a) = x · 1 = 1 ∈ I, and so x · a ∈ I by (I2′). Since
(a · x) · (a · x) = 1 ∈ I, we have (a · x) · x ∈ I by (I2′). It follows that
(a · (b · x)) · (b · x) ∈ I for all a, b ∈ I and x ∈ X. Using (I2′), we get
(a · (b · x)) · x ∈ I. Therefore I is an ideal of X.

Denote by F(X, [−1, 0]) the collection of functions from a set X to
[−1, 0]. We say that an element of F(X, [−1, 0]) is a negative-valued
function from X to [−1, 0](briefly, an N -function on X). By an N -
structure we mean an ordered pair (X, f) of X and an N -function f on
X.

For any N -structure (X, f) and t ∈ [−1, 0], the non-empty set

C(f ; t) := {x ∈ X|f(x) ≤ t}
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Table 1. · -operation

· 1 a b c d

1 1 a b c d
a 1 1 b c d
b 1 a 1 c c
c 1 1 b 1 b
d 1 1 1 1 1

is called a closed (f, t)-cut of (X, f).

Denote by I(X) the set of all ideals of X.

Definition 3.2. By an N -ideal of X we mean an N -structure (X, f)
which satisfies the following assertion:

(3.1) (∀t ∈ [−1, 0])(C(f ; t) ∈ I(X) ∪ {∅}).

Example 3.3. Let X := {1, a, b, c, d} be a set with the · -operation
given by Table 1. Then (X; ·, 1) is a pre-logic.
(1) Consider an N -structure (X, f) in which f is defined by

f(x) :=

{
−0.5 if x ∈ {1, a, b}
−0.2 if x ∈ {c, d}.

Then

C(f ; t) =


X if t ∈ [−0.2, 0]

{1, a, b} if t ∈ [−0.5,−0.2)

∅ if t ∈ [−1,−0.5).

Note that {1, a, b} and X are ideals of X and so (X, f) is an N -ideal of
X.
(2) Consider an N -structure (X, g) in which g is defined by

g(x) :=

{
−0.8 if x ∈ {1, b, c}
−0.4 if x ∈ {a, c}.

Then

C(g; t) =


X if t ∈ [−0.4, 0]

{1, b, c} if t ∈ [−0.8,−0.4)

∅ if t ∈ [−1,−0.8).

Note that {1, b, c} is not an ideal of X since (b · (a · a)) · a = (b · 1) · a =
1 · a = a /∈ {1, b, c}. Hence (X, g) is not an N -ideal of X.
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Theorem 3.4. For an N -structure (X, f), the following are equivalent:

(1) (X, f) is an N -ideal of X,
(2) (X, f) satisfies the following two conditions:

(2.1) (∀x, y ∈ X)(f(x · y) ≤ f(y)),

(2.2) (∀x, y, z ∈ X)(f((x · (y · z)) · z) ≤ max{f(x), f(y)}).

Proof. Assume that (X, f) satisfies two conditions (2.1) and (2.2). Let
t ∈ [−1, 0] be such that C(f ; t) 6= ∅. Let x ∈ X and a ∈ C(f ; t). Then
f(a) ≤ t, and so f(x · a) ≤ f(a) ≤ t by (2.1). Thus x · a ∈ C(f ; t). Let
x ∈ X and a, b ∈ C(f ; t). Then f(a) ≤ t and f(b) ≤ t. It follows from
(2.2) that

f((a · (b · x)) · x) ≤ max{f(a), f(b)} ≤ t
so that (a · (b · x)) · x ∈ C(f ; t). Hence C(f ; t) is an ideal of X, and
therefore (X, f) is an N -ideal of X.

Conversely, suppose that (X, f) is an N -ideal of X. If f(a · b) >
tb := f(b) for some a, b ∈ X and tb ∈ [−1, 0], then b ∈ C(f ; tb), but
a·b /∈ C(f ; tb). This is a contradiction, and so (2.1) is valid. Assume that
(2.2) is not valid. Then there exist a, b, c ∈ X such that f((a ·(b ·c)) ·c) >
max{f(a), f(b)}. Taking t := max{f(a), f(b)} implies that a, b ∈ C(f ; t)
and (a · (b ·c)) ·c /∈ C(f ; t). This is impossible, and thus (2.2) is true.

Proposition 3.5. Every N -ideal (X, f) satisfies the following inequal-
ities:

(1) (∀x ∈ X)(f(1) ≤ f(x)),
(2) (∀x, y ∈ X)(f((x · y) · y) ≤ f(x)).

Proof. (1) Using (P1) and (2.1) in Theorem 3.4, we have f(1) = f(x·x) ≤
f(x) for all x ∈ X.
(2) Taking x := x, y := 1 and z := y in Theorem 3.4(2.2) and using (P2)
and (1), we get

f((x · y) · y) = f((x · (1 · y)) · y) ≤ max{f(x), f(1)} = f(x)

for all x, y ∈ X.

Corollary 3.6. Every N -ideal (X, f) is order reversing.

Proof. Let x, y ∈ X be such that x ≤ y. Then x · y = 1, and so

f(y) = f(1 · y) = f((x · y) · y) ≤ f(x)

by (P2) and Proposition 3.5(2). Hence (X, f) is order reversing.

Proposition 3.7. An N -structure (X, f) satisfying the first condition
of Proposition 3.5 and
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(3.2) (∀x, y, z ∈ X)(f(x · z) ≤ max{f(x · (y · z)), f(y)})
is order reversing.

Proof. Let x, y ∈ X be such that x ≤ y. Then x · y = 1, and so

f(y) = f(1 · y) ≤ max{f(1 · (x · y)), f(x)} = max{f(1 · 1), f(x)} = f(x)

by (P1), (P2), (3.2) and Proposition 3.5(1). Therefore (X, f) is order
reversing.

Theorem 3.8. For any N -structure (X, f) in a pre-logic X, the follow-
ing are equivalent:

(1) (X, f) is an N -ideal of X.
(2) (X, f) satisfies two conditions Proposition 3.5(1) and Proposition

3.7(3.2).

Proof. Assume that (X, f) is an N -ideal of X. It suffices to show that
(X, f) satisfies (3.2). Using Lemma 2.8(b), we have

(3.3) (y · z) · z ≤ (x · (y · z)) · (x · z),
i.e., ((y · z) · z) · ((x · (y · z)) · (x · z)) = 1 for all x, y, z ∈ X. It follows
from (P2), (2.2) in Theorem 3.4 and Proposition 3.5(2) that

f(x · z) =f(1 · (x · z))
=f((((y · z) · z) · ((x · (y · z)) · (x · z))) · (x · z))
≤max{f((y · z) · z), f(x · (y · z))}
≤max{f(x · (y · z)), f(y)}.

Hence (X, f) satisfies the condition (3.2).

Conversely, suppose that (X, f) satisfies Proposition 3.5(1) and (3.2).
Using (P1), Lemma 2.2(a), (3.2) and Proposition 3.5(1), we have

f(x · y) ≤max{f(x · (y · y)), f(y)}
= max{f(x · 1), f(y)}
= max{f(1), f(y)} = f(y)

and

(3.4) f((x · y) · y) ≤ max{f((x · y) · (x · y)), f(x)}

= max{f(1), f(x)} = f(x)
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for all x, y ∈ X. Since (X, f) is order reversing by Proposition 3.7, it
follows from (3.3) that f((y · z) · z) ≥ f((x · (y · z)) · (x · z)) so from (3.2)
and (3.4) that

f((x · (y · z)) · z) ≤max{f(((x · (y · z)) · (x · z)), f(x)}
≤max{f((y · z) · z), f(x)}
≤max{f(x), f(y)}

for all x, y, z ∈ X. By Theorem 3.4, (X, f) is an N -ideal of X.

Lemma 3.9. Every N -ideal (X, f) satisfies the following inequality:

(3.5) (∀x, y ∈ X)(f(y) ≤ max{f(x · y), f(x)}).

Proof. Using (P1), (P2) and (2.2) in Theorem 3.4, we have

f(y) = f(1 · y) = f((x · y) · (x · y)) · y) ≤ max{f(x), f(x · y)}
for all x, y ∈ X.

Corollary 3.10. An N -structure (X, f) is an N -ideal of X if and only
if (X, f) satisfies two conditions:

(1) (∀x ∈ X)(f(1) ≤ f(x)) and Lemma 3.9(3.5).

Proof. Assume that an N -structure (X, f) is an N -ideal of X. By
Lemma 3.9, (X, f) satisfies the condition (3.5).

Conversely, suppose that an N -structure (X, f) satisfies the condi-
tions (1) and (3.5). Then we have f(x · z) ≤ max{f(y · (x · z)), f(y)} for
all x, y, z ∈ X. By Theorem 3.8, (X, f) is an N -ideal of X.

Lemma 3.11. For any N -structure (X, f) in a pre-logic X, the follow-
ing are equivalent:

(1) (∀x, y ∈ X)(f(y) ≤ max{f(x · y), f(x)}),
(2) (∀x, y, z ∈ X)(f(x · z) ≤ max{f(x · (y · z)), f(x · y)}).

Proof. Assume that (X, f) satisfies (1). For any x, y, z ∈ X, using (P3),
we have

f(x · z) ≤max{f((x · y) · (x · z)), f(x · y)}
=max{f(x · (y · z)), f(x · y)}.

Thus (2) is valid.
Conversely, suppose that (X, f) satisfies (2). Putting x := 1 in (2)

and using (P2), we have

f(1 · z) ≤max{f((1 · (y · z)), f(1 · y)}
=max{f(y · z), f(y)}.
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Hence f(z) ≤ max{f(y · z), f(y)}. Thus (1) is true.

Proposition 3.12. An N -structure (X, f) is an N -ideal of X if and
only if (X, f) satisfies two conditions:

(1) (∀x ∈ X)(f(1) ≤ f(x))
(2) (∀x, y, z ∈ X)(f(x · z) ≤ max{f(x · (y · z)), f(x · y)}).

Proof. It follows from Lemma 3.11 and Corollary 3.10.

Corollary 3.13. Every N -ideal (X, f) satisfies the following inequality

(∀x, y ∈ X)(f(x · y) ≤ f(x · (x · y)).

Proof. Putting x := x, z := y and y := x in Proposition 3.12(2), we have

f(x · y) ≤max{f(x · (x · y)), f(x · x)}
=max{f(x · (x · y)), f(1)}
=f(x · (x · y)),

for all x, y ∈ X.

For any a, b ∈ X, the set

A(a, b) := {x ∈ X|a · (b · x) = 1}
is called the upper set of a and b. Clearly, 1, a, b ∈ A(a, b) for all a, b ∈ X.

Theorem 3.14. ([2]) Let (X; ·, 1) be a pre-logic. Then the upper set
A(x, y) is a deductive system of X, where x, y ∈ X.

Corollary 3.15. Let (X; ·, 1) be a pre-logic. Then the upper set A(x, y)
is an ideal of X, where x, y ∈ X.

Proof. It follows from Theorem 2.7 and Theorem 3.14.

Proposition 3.16. If (X, f) is an N -ideal of X, then

(3.6) (∀a, b ∈ X)(∀t ∈ [−1, 0])(a, b ∈ C(f ; t)⇒ A(a, b) ⊆ C(f ; t)).

Proof. Let a, b ∈ C(f ; t) for any t ∈ [−1, 0]. Then f(a) ≤ t and f(b) ≤ t.
If x ∈ A(a, b), then a · (b · x) = 1. Using (P2) and Theorem 3.4(2), we
have

f(x) = f(1 · x) = f((a · (b · x)) · x) ≤ max{f(a), f(b)} ≤ t,
and so x ∈ C(f ; t). Therefore A(a, b) ⊆ C(f ; t).

We now consider the converse of Proposition 3.16. Let t ∈ [−1, 0] and
(X, f) an N -structure satisfying (3.6). Note that 1 ∈ A(a, b) ⊆ C(f ; t)
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for all a, b ∈ X. Let x, y, z ∈ X be such that x · (y · z) ∈ C(f ; t) and
y ∈ C(f ; t). Using (P4) and (P1), we know that

(x · (y · z)) · (y · (x · z)) = (x · (y · z)) · (x · (y · z)) = 1.

Thus x · z ∈ A(x · (y · z), y) ⊆ C(f ; t), and so C(f ; t) is an ideal of X by
Theorem 3.1. Therefore (X, f) is an N -ideal of X. Hence we have the
following theorem.

Theorem 3.17. If an N -structure (X, f) satisfies (3.6), then (X, f) is
an N -ideal of X.

Corollary 3.18. For any N -ideal (X, f), we have

(3.7) (∀t ∈ [−1, 0])(C(f ; t) 6= ∅ ⇒ C(f ; t) = ∪a,b∈C(f ;t)A(a, b)).

Proof. Assume that C(f ; t) 6= ∅ for all t ∈ [−1, 0]. Since 1 ∈ C(f ; t), we
get

C(f ; t) ⊆ ∪a∈C(f ;t)A(a, 1) ⊆ ∪a,b∈C(f ;t)A(a, b).

Now, let x ∈ ∪a,b∈C(f ;t)A(a, b). Then there exist u, v ∈ C(f ; t) such
that x ∈ A(u, v) ⊆ C(f ; t). Hence ∪a,b∈C(f ;t)A(a, b) ⊆ C(f ; t). This
completes the proof.

4. Positive implicative N -ideals

Definition 4.1. A non-empty subset I of X is a positive implicative
ideal of a pre-logic X if it satisfies (I1′) and

(I3) (∀y, z ∈ X)(∀x ∈ I) (x · ((y · z) · y) ∈ I ⇒ y ∈ I).

Example 4.2. Consider a pre-logic X = {1, a, b, c, d} as in Example
3.3(1). It is easy to check that I = {1, a, b} is a positive implicative
ideal of X.

Theorem 4.3. Every positive implicative ideal of a pre-logic X is an
ideal of X.

Proof. Let I be a positive implicative ideal of X and let x · y ∈ I and
x ∈ I. Then x · ((y · y) · y) = x · (1 · y) = x · y ∈ I. Since I is a positive
implicative ideal of X, y ∈ I. Hence I is a deductive system of X. By
Theorem 2.7, I is an ideal of X.

Denote by Ip(X) the set of all positive implicative ideals of X.

Definition 4.4. By a positive implicative N -ideal of X we mean an
N -structure (X, f) which satisfies the following assertion:

(4.1) (∀t ∈ [−1, 0])(C(f ; t) ∈ Ip(X) ∪ {∅}).
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Example 4.5. Let X = {1, a, b, c, d} be a pre-logic as in Example
3.3(1).
(1) Consider an N -structure (X, f) as in Example 3.3(1). Then (X, f)
is a positive implicative N -ideal of X, since {1, a, b} is a positive im-
plicative ideal of X.
(2) Consider an N -structure (X, g) in which g is defined by

g(x) :=

{
−0.7 if x ∈ {1, b}
−0.5 if x ∈ {a, c, d}.

Then

C(g; t) =


X if t ∈ [−0.5, 0]

{1, b} if t ∈ [−0.7,−0.5)

∅ if t ∈ [−1,−0.7).

Note that J := {1, b} is an ideal of X but not a positive implicative ideal
of X, since b · ((a · d) · a) = b · (d · a) = b · 1 = 1 ∈ J and b ∈ J but a /∈ J .
Hence (X, f) is an N -ideal of X, but not a positive implicative N -ideal
of X.

Proposition 4.6. Every positive implicative N -ideal (X, f) is an N -
ideal.

Proof. Straightforward by Theorem 4.3 and Definition 4.4.

The converse of Proposition 4.6 is not true in general (see Example
4.5(2)).

Theorem 4.7. For an N -structure (X, f), the following are equivalent:

(1) (X, f) is a positive implicative N -ideal of X.
(2) (X, f) satisfies the following two conditions:

(2.1) (∀x ∈ X)(f(1) ≤ f(x))

(2.2) (∀x, y, z ∈ X)(f(y) ≤ max{f(x · ((y · z) · y)), f(x)}.

Proof. Assume that (X, f) satisfies two conditions (2.1) and (2.2). Let
t ∈ [1−, 0] be such that C(f ; t) 6= ∅. Then there exists a ∈ C(f ; t). By
(2.1), f(1) ≤ f(a) ≤ t. Thus 1 ∈ C(f ; t). Let x · ((y · z) · y), x ∈ C(f ; t).
Then f(x · ((y · z) · y)) ≤ t and f(x) ≤ t. It follows from (2.2) that

f(y) ≤ max{f(x · ((y · z) · y)), f(x)} ≤ t
so that y ∈ C(f ; t). Hence C(f ; t) is a positive implicative ideal of X
and therefore (X, f) is a positive implicative N -ideal of X.

Conversely, suppose that (X, f) is a positive implicative N -ideal of
X. If f(1) > f(a) := ta for some a ∈ X and so ta ∈ [−1, 0], then



Ideal theory of pre-logics based on N -structures 545

a ∈ C(f ; ta), but 1 /∈ C(f ; ta). This is a contradiction, and so (2.1) is
true. Assume that (2.2) is not valid. Then there exist a, b, c ∈ X such
that

f(b) > max{f(a · ((b · c) · b)), f(a)}.
Taking t := max{f(a·((b·c)·b)), f(a)} implies that a·((b·c)·b), a ∈ C(f ; t)
and b /∈ C(f ; t). This is impossible and thus (2.2) is valid.

Proposition 4.8. For an N -ideal (X, f), the following are equivalent:

(1) (X, f) is a positive implicative N -ideal of X
(2) (∀x, y ∈ X)(f(x) ≤ f((x · y) · x)).

Proof. Assume (X, f) is a positive implicative N -ideal of X. Putting
x := 1, y := x, and z := z in Theorem 4.7(2.2), we have

f(x) ≤max{f(1 · ((x · z) · x)), f(1)}
=f((x · z) · x).

Hence (2) holds.
Conversely, Suppose that anN -ideal (X, f) satisfies (2). By Corollary

3.10, for any x, y, z ∈ X we have

f(y) ≤f((y · z) · y)

≤max{f(x · ((y · z) · y)), f(x)}.
By Theorem 4.7, (X, f) is a positive implicative N -ideal of X.

Corollary 4.9. Any positive implicative N -ideal satisfies the following
property:

(∀x, y ∈ X)(f((y · x) · x) ≤ f((x · y) · y)).

Proof. Since x ≤ (y · x) · x for all x, y ∈ X, it follows from Lemma 2.4
that ((y · x) · x) · y ≤ x · y. Then

(x · y) · y ≤(y · x) · ((x · y) · x)

=(x · y) · ((y · x) · x)

≤(((y · x) · x) · y) · ((y · x) · x).

By Corollary 3.6 and Proposition 4.8, we have f((x ·y) ·y) ≥ f((((y ·x) ·
x) · y) · ((y · x) · x)) ≥ f((y · x) · x), for all x, y ∈ X. This completes the
proof.
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