• 제목/요약/키워드: Data Processor

검색결과 1,278건 처리시간 0.049초

A VLSI DESIGN OF CD SIGNAL PROCESSOR for High-Speed CD-ROM

  • Kim, Jae-Won;Kim, Jae-Seok;Lee, Jaeshin
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -2
    • /
    • pp.1296-1299
    • /
    • 2002
  • We implemented a CD signal processor operated on a CAV 48-speed CD-ROM drive into a VLSI. The CD signal processor is a mixed mode monolithic IC including servo-processor, data recovery, data-processor, and I-bit DAC. For servo signal processing, we included a DSP core, while, for CAV mode playback, we adopted a PLL with a wide recovery range. Data processor (DP) was designed to meet the yellow book specification.[2]So, the DP block consists of EFM demodulator, C1/C2 ECC block, audio processor and a block transferring data to an ATAPI chip. A modified Euclid's algorithm was used as a key equation solver for the ECC block To achieve the high-speed decoding, the RS decoder is operated by a pipelined method. Audio playability is increased by playing a CD-DA disc at the speed of 12X or 16X. For this, subcode sync and data are processed in the same way as main data processing. The overall performance of IC is verified by measuring a transfer rate from the innermost area of disc to the outermost area. At 48-speed, the operating frequency is 210 ㎒, and this chip is fabricated by 0.35 um STD90 cell library of Samsung Electronics.

  • PDF

Design and Implementation of a Crypto Processor and Its Application to Security System

  • Kim, Ho-Won;Park, Yong-Je;Kim, Moo-Seop
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2002년도 ITC-CSCC -1
    • /
    • pp.313-316
    • /
    • 2002
  • This paper presents the design and implementation of a crypto processor, a special-purpose microprocessor optimized for the execution of cryptography algorithms. This crypto processor can be used fur various security applications such as storage devices, embedded systems, network routers, etc. The crypto processor consists of a 32-bit RISC processor block and a coprocessor block dedicated to the SEED and triple-DES (data encryption standard) symmetric key crypto (cryptography) algorithms. The crypto processor has been designed and fabricated as a single VLSI chip using 0.5 $\mu\textrm{m}$ CMOS technology. To test and demonstrate the capabilities of this chip, a custom board providing real-time data security for a data storage device has been developed. Testing results show that the crypto processor operates correctly at a working frequency of 30MHz and a bandwidth o1240Mbps.

  • PDF

차량동역학 해석 프로그램 AutoDyn7의 개발(∥) - 전처리 및 후처리 프로그램 (Developemtn of Vehicle Dynamics Program AutoDyn7(II) - Pre-Processor and Post-Processor)

  • 한종규;김두현;김성수;유완석;김상섭
    • 한국자동차공학회논문집
    • /
    • 제8권3호
    • /
    • pp.190-197
    • /
    • 2000
  • A graphic vehicle modeling pre-processing program and a visualization post-processing program have been developed for AutoDyn7, which is a special program for vehicle dynamics. The Rapid-App for GUI(Graphic User Interface) builder and the Open Inventor for 3D graphic library have been employed to develop these programs in Silicon Graphics workstation. A Graphic User Interface program integrates vehicle modeling pre-processor, AutoDyn7 analysis processor, and visualization post-processor. In vehicle modeling pre-processor, vehicle hard point data for a suspension model are automatically converted into multibody vehicle system data. An interactive graphics capabilities provides suspension modeling aides to verify user input data interactively. In visualization post-processor, vehicle virtual test simulation results are animated with virtual testing environments.

  • PDF

루프를 효과적으로 처리하는 PASC 프로세서 구조 (PASC Processor Architecture for Enhanced Loop Execution)

  • 지승현;박노광;전중남;김석일
    • 한국정보처리학회논문지
    • /
    • 제6권5호
    • /
    • pp.1225-1240
    • /
    • 1999
  • This paper proposes PASC(PArtitioned SCHeduler) processor architecture that equips with a number of functional unit and an individual scheduler paris. Every scheduler of the PASC processor can determine whether a unit instruction can be issued to the associated functional unit or it is to be waited until next cycle caused by a resource collision or data dependencies. In the PASC processor, only the functional unit with a resource collision or data dependencies waits by executing a NOP(No OPeration) instruction and the other functional units execute their own instructions. Therefore we can expect the code compaction effect on the PASC processor. Thus, the last instruction of a loop at certain iteration and the very first instruction of the loop at the next iteration can be scheduled simultaneously if the two instructions do not incur any resource collision or data dependencies. Therefore, we can expect that such two instructions without any resource collision and data dependencies are packed into the same very long instruction word and thus, the two instructions are executed concurrently at run time. As a result, we can shorten execution cycles of a loop comparing to the execution of the loop on a traditional VLIW or SVLIW processor architecture. Simulation result also promises faster execution of loops on a PASC processor architecture than those on a VLIW and SVLIW processor architecture.

  • PDF

최신 프로세서 탑재 비행제어 컴퓨터의 통합시험을 위한 프로세서 모니터링 연구 (A Study on Processor Monitoring for Integration Test of Flight Control Computer equipped with A Modern Processor)

  • 이철;김재철;조인제
    • 제어로봇시스템학회논문지
    • /
    • 제14권10호
    • /
    • pp.1081-1087
    • /
    • 2008
  • This paper describes limitations and solutions of the existing processor-monitoring concept for a military supersonics aircraft Flight Control Computer (FLCC) equipped with modern architecture processor to perform the system integration test. Safecritical FLCC integration test, which requires automatic test for thousands of test cases and real-time input/output test condition generation, depends on the processor-monitoring device called Processor Interface (PI). The PI, which relies upon on the FLCC processor's external address and data-bus data, has some limitations due to multi-fetching capability of the modern sophisticated military processors, like C6000's VLIW (Very-Long Instruction Word) architecture and PowerPC's Superscalar architecture. Several techniques for limitations were developed and proper monitoring approach was presented for modem processor-adopted FLCC system integration test.

Mobile Multimedia 지원을 위한 Embedded Processor 구조 설계 (Design of Embedded Processor Architecture Applicable to Mobile Multimedia)

  • 이호석;한진호;배영환;조한진
    • 대한전자공학회논문지SD
    • /
    • 제41권5호
    • /
    • pp.71-80
    • /
    • 2004
  • 본 논문은 mobile platform에서 사용될 Multimedia 적용을 위한 embedded Processor의 기본 구조 연구에 관한 내용으로 MPEG4 응용에 적합한 processor의 기본 구조 그리고 mobile platform에 적용될 수 있는 energy efficiency를 고려한 구조설계를 주 내용으로 하고 있다. multimedia 응용 embedded processor의 기본 구현 구조 요소인 processor data path architecture(pipeline, branch prediction, multiple issue superscalar, function unit number)의 기본 구조 설정과 cache hierarchy와 그 구성의 적합한 예상구조를 설정하기 위해 본 논문에서는 multimedia 응용 프로그램인 MPEG4를 processor simulator의 test bench로 사용하여 다양한 구조에 대한 simulation을 수행하였다. 그리고 mobile platform 적용에 적합한 구조인지에 대한 문제를 energy efficiency관점에서 고찰하여 적용 가능한 기본 processor 구조를 설정하였다. 그리고 본 논문에서 제안된 기본 구조 연구는 mobile platform에 바로 적용이 가능하며 더 나아가 특정 응용 프로그램에 최적의 성능을 발휘할 수 있는 자동화 설계기반환경에서의 configurable processor 설계에서 그 기본 processor 구조로 사용될 수 있다.

A Novel Reconfigurable Processor Using Dynamically Partitioned SIMD for Multimedia Applications

  • Lyuh, Chun-Gi;Suk, Jung-Hee;Chun, Ik-Jae;Roh, Tae-Moon
    • ETRI Journal
    • /
    • 제31권6호
    • /
    • pp.709-716
    • /
    • 2009
  • In this paper, we propose a novel reconfigurable processor using dynamically partitioned single-instruction multiple-data (DP-SIMD) which is able to process multimedia data. The SIMD processor and parallel SIMD (P-SIMD) processor, which is composed of a number of SIMD processors, are usually used these days. But these processors are inefficient because all processing units (PUs) should process the same operations all the time. Moreover, the PUs can process different operations only when every SIMD group operation is predefined. We propose a processor control method which can partition parallel processors into multiple SIMD-based processors dynamically to enhance efficiency. For performance evaluation of the proposed method, we carried out the inverse transform, inverse quantization, and motion compensation operations of H.264 using processors based on SIMD, P-SIMD, and DP-SIMD. Experimental results show that the DP-SIMD control method is more efficient than SIMD and P-SIMD control methods by about 15% and 14%, respectively.

Post Processor Using a Fuzzy Feed Rate Generator for Multi-Axis NC Machine Tools with a Rotary Unit

  • Nagata, F.;Kusumoto, Y.;Hasebe, K.;Saito, K.;Fukumoto, M.;Watanabe, K.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.438-443
    • /
    • 2005
  • Handy paint rollers with simple or no patterns are generally used to transcribe its design to a wall just after painting. However, the types of the patterns are limited to several conventional ones, so that interior planners' or decorators' demands are gradually tending to getting attractive roller designs. In order to obtain abundant kinds of the roller designs, a new advanced 3D machining method should be established for cylindrical models. In this paper, a post-processor that can generate suitable NC data is proposed for multi-axis NC machine tools with a rotary unit. The 3D machining system with the post-processor is also presented for an attractive interior decorating. The machining system allows us to easily transcribe the relief designs from on a flat model to on a cylindrical model. The effectiveness of the proposed 3D machining system using the post-processor is demonstrated through some machining experiments.

  • PDF

A Low-Complexity 128-Point Mixed-Radix FFT Processor for MB-OFDM UWB Systems

  • Cho, Sang-In;Kang, Kyu-Min
    • ETRI Journal
    • /
    • 제32권1호
    • /
    • pp.1-10
    • /
    • 2010
  • In this paper, we present a fast Fourier transform (FFT) processor with four parallel data paths for multiband orthogonal frequency-division multiplexing ultra-wideband systems. The proposed 128-point FFT processor employs both a modified radix-$2^4$ algorithm and a radix-$2^3$ algorithm to significantly reduce the numbers of complex constant multipliers and complex booth multipliers. It also employs substructure-sharing multiplication units instead of constant multipliers to efficiently conduct multiplication operations with only addition and shift operations. The proposed FFT processor is implemented and tested using 0.18 ${\mu}m$ CMOS technology with a supply voltage of 1.8 V. The hardware- efficient 128-point FFT processor with four data streams can support a data processing rate of up to 1 Gsample/s while consuming 112 mW. The implementation results show that the proposed 128-point mixed-radix FFT architecture significantly reduces the hardware cost and power consumption in comparison to existing 128-point FFT architectures.