
ETRI Journal, Volume 31, Number 6, December 2009 © 2009 Chun-Gi Lyuh et al. 709

In this paper, we propose a novel reconfigurable
processor using dynamically partitioned single-instruction
multiple-data (DP-SIMD) which is able to process
multimedia data. The SIMD processor and parallel SIMD
(P-SIMD) processor, which is composed of a number of
SIMD processors, are usually used these days. But these
processors are inefficient because all processing units
(PUs) should process the same operations all the time.
Moreover, the PUs can process different operations only
when every SIMD group operation is predefined. We
propose a processor control method which can partition
parallel processors into multiple SIMD-based processors
dynamically to enhance efficiency. For performance
evaluation of the proposed method, we carried out the
inverse transform, inverse quantization, and motion
compensation operations of H.264 using processors based
on SIMD, P-SIMD, and DP-SIMD. Experimental results
show that the DP-SIMD control method is more efficient
than SIMD and P-SIMD control methods by about 15%
and 14%, respectively.

Keywords: Reconfigurable processor, SIMD, array
processor, multimedia, DSP, H.264.

Manuscript received May 6, 2009; revised Oct. 12, 2009; accepted Oct. 15, 2009.
This work was supported by the IT R&D program of MKE/IITA, Rep. of Korea (2006-S-

006-04, Components/Module technology for Ubiquitous Terminals).
Chun-Gi Lyuh (phone: +82 42 860 1248, email: cglyuh@etri.re.kr), Jung-Hee Suk (email:

jhsuk@etri.re.kr), Ik-Jae Chun (ijchun@etri.re.kr), and Tae Moon Roh (tmroh@etri.re.kr) are
with the Convergence Components & Materials Research Laboratory, ETRI, Daejeon, Rep. of
Korea.

doi:10.4218/etrij.09.1209.0021

I. Introduction

H.264 is an open, licensed standard which supports most of
the efficient video compression techniques available today. In
addition, the higher performance in video compression and
decompression is required, the more complex hardware is
needed as in [1]. Various hardware implementation methods
for H.264 have been proposed [2]-[6]. Some partial or full
H.264 encoders or decoders in [2]-[4] were developed by using
an application-specific integrated circuit (ASIC) design method.
Although these encoders or decoders implemented by ASIC
are very good for high performance, they have limitations in
flexibility when some modifications are needed. On the other
hand, an application specific instruction set processor (ASIP)
[5] and configurable processor [6] design methods have some
flexibility, but their performance is not as good as that of the
ASIC design method.

Figure 1 shows the relations between flexibility and
performance according to the implementation methods. A
general purpose processor is flexible enough to be applied to
various systems in various fields, but its performance is low.
An ASIP can adopt a more optimized instruction set than a

Fig. 1. Trade-off between flexibility and performance.

General
purpose

processor Application
specific

instruction set
processor Reconfigurable

processor

ASIC

Performance

Fl
ex

ib
ili

ty

A Novel Reconfigurable Processor Using
Dynamically Partitioned SIMD for Multimedia Applications

 Chun-Gi Lyuh, Jung-Hee Suk, Ik-Jae Chun, and Tae Moon Roh

710 Chun-Gi Lyuh et al. ETRI Journal, Volume 31, Number 6, December 2009

jfj

Fig. 2. Various control methods.

PU PU

Control unit Control unit Control unit

PU PU

PU PU

PU PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

PU

(c) P-SIMD (a) SIMD (b) MIMD

general purpose processor can for performance enhancement.
However, an ASIP also has the same disadvantage in
performance that the general purpose processor has. Although
an ASIC has higher performance than other circuits due to its
optimized hardware implementation for each application, it
cannot be altered flexibly for various applications. A
reconfigurable processor takes advantage of the general
purpose processor and ASIC to achieve high performance with
reasonable flexibility. A reconfigurable architecture was first
proposed by Estrin [7], [8]. The reconfigurable architecture is a
hybrid computer architecture composed of fixed and variable
blocks and supports flexibility in software and the speed of the
hardware. Research on the flexibility and performance of the
reconfigurable architecture has been pursued.

A reconfigurable processor generally has an array
architecture for its operation performance and requires a smart
control method for its array processors in order to improve its
operation efficiency. We can classify the control methods into
three main groups: single-instruction multiple-data (SIMD),
multiple-instructions multiple-data (MIMD), and parallel
SIMD (P-SIMD) control methods. These methods are shown
in Fig. 2. In Fig. 2, PU denotes processing unit (PU), and thick
lines denote the instructions to operate in each PU. The SIMD
control method has a short length instruction, and all the PUs
work using the same operation. Therefore, when various
independent operations are needed, the method causes a
reduction in processing performance. Also, the MIMD control
method can improve the processing performance by using
different instructions in each of the PUs. However, in
reconfigurable processor architecture, only one control unit
(CU) controls every PU for the different instructions. That is, a
PU cannot work independently. As a result, the operations are
inefficient if the instruction cannot be predefined according to
the condition of the data. The method also has problems of
long instructions, such as area overhead.

To solve the problems of the SIMD and MIMD control
methods, we can use a P-SIMD control method. The parallel
processors are partitioned into several SIMD groups when they

are designed, and each partitioned SIMD group uses the same
instructions. For example, MorphoSys, one of well-known
reconfigurable architectures, uses the P-SIMD control method
to control 64 reconfigurable cells [9]. REMARC uses both the
P-SIMD and MIMD control methods to control 64
nanoprocessors [10]. However, in P-SIMD control methods,
the operations are still inefficient if the instructions cannot be
predefined according to the condition of the data. Therefore,
we propose a dynamically partitioned SIMD (DP-SIMD)
control method and implement an architecture supporting the
control method to solve the problems of the existing SIMD,
MIMD, and P-SIMD control methods.

The rest of this paper is organized as follows. In section II, a
DP-SIMD control method is proposed. Section III presents the
reconfigurable processor based on the proposed control
method. Section IV shows the experimental results. Finally,
section V concludes this paper.

II. Dynamically Partitioned SIMD Architecture

1. Dynamically Partitioned SIMD Control Method

The H.264 decoder is composed of variable length decoding
(VLD), inverse transform and quantization (ITQ), motion
compensation (MC), intra prediction (IP), and a deblocking
filter (DF) [11], [12]. Among these, VLD is not compatible
with a parallel process, and ITQ can promote operation
performance using a SIMD control method. However, the IP,
MC, and DF change operations according to conditions such as
prediction mode and boundary strength. These conditional
operations selected according to the conditions reduce the
efficiency of the SIMD operation.

Figure 3 shows an example of the conditional operations to
obtain the variables a and d using different operands and
operators depending on the condition.

Because all of the PUs composed in parallel for the SIMD
control method generally perform the same operation at the
same time, all of the PUs have to perform all operations of each

0 31 2

Fig. 3. An example of conditional operations.

Condition ?

a = b + c a = b – c d = e + f d = e – f

ETRI Journal, Volume 31, Number 6, December 2009 Chun-Gi Lyuh et al. 711

Fig. 4. Conditional operation of the SIMD control method.

PU 1

CNDREG:=condition==0

if (CNDREG==true) a:=b+c

CNDREG:=condition==1

if (CNDREG==true) a:=b-c

CNDREG:=condition==2

if (CNDREG==true) d:=e+f

CNDREG:=condition==3

if (CNDREG==true) d:=e-f

CNDREG:=condition==0

if (CNDREG==true) a:=b+c

CNDREG:=condition==1

if (CNDREG==true) a:=b-c

CNDREG:=condition==2

if (CNDREG==true) d:=e+f

CNDREG:=condition==3

if (CNDREG==true) d:=e-f

PU 0

Fig. 5. Conditional operation of the DP-SIMD control method.

PU 0 PU 1

CNDREG[1:0]:=condition CNDREG[1:0]:=condition

if (CNDREG==0) a:=b+c
else if (CNDREG==1) a:=b-c
else if (CNDREG==2) d:=e+f
else if (CNDREG==3) d:=e-f

if (CNDREG==0) a:=b+c
else if (CNDREG==1) a:=b-c
else if (CNDREG==2) d:=e+f
else if (CNDREG==3) d:=e-f

of the conditions including other conditions that are not related
to a given processing flow. This is the reason for the low
operation efficiency of the SIMD control method. Figure 4
shows the operation method when the previous example is
carried out under a parallel processor of the existing SIMD
control method. First, the condition flag register CNDREG is
set true after the decision of whether the condition is zero is
made, and the operation result is then reflected according to the
CNDREG while the operation a := b + c under first condition
is performed. After that, the second, third, and fourth conditions
are applied in the same manner. All PUs should perform all
these operations, and it takes 8 steps including 4 steps for
computations. Although the P-SIMD and the MIMD control
methods can enhance the performance when the categories of
operations for each PU can be predecided before their
operation, they achieve almost the same performance as SIMD
in other cases.

On the other hand, PUs in DP-SIMD can select the
instructions according to the data condition while their
operations are executed. Therefore, the parallel processors can
be dynamically partitioned into multiple identical instruction
groups of SIMD at any time. This is why we named the
proposed method dynamically partitioned SIMD. In DP-SIMD
processors, the performance can be enhanced because the PUs

do not have to process useless operations. Figure 5 shows an
operation method when applying the previous example using
the proposed DP-SIMD control method. First, each PU
estimates the condition value through the SIMD operation and
then sets the CNDREG value. After that, it performs the
operation through the DP-SIMD control method according to
the CNDREG value. In this case, two steps are sufficient for
the processing time, including only one step for computation.
When four instructions can be selected at a time in an
implemented DP-SIMD processor, the operation efficiency of
DP-SIMD would be enhanced 4 times compared to SIMD in
the ideal.

2. Dynamically Partitioned SIMD Architecture

By applying the DP-SIMD control method in a parallel
processor, the problem of low operation efficiency caused by
the existing SIMD control method is solved. The instruction for
the DP-SIMD is created by combining various instructions into
one, as in the case of a very long instruction word (VLIW)
processor. But, unlike the VLIW, which determines the order
according to the function block, the PU of a DP-SIMD directly
chooses an instruction using the conditions and then performs
its operation.

Figure 6(a) shows a processor structure of the DP-SIMD
control method. Several PUs are composed in parallel, and a
CU is used to control them. The CU reads and transmits the
instructions that the PUs will carry out from the program
memory and controls the entire operation.

There are three possible means of control in the DP-SIMD
control method. First, an instruction based on the value
calculated by a PU can be chosen. This is called data-based
partitioned SIMD control. An example for this step is shown in
Fig. 6(b). In the case of the previous example for the
conditional operation, a PU sets up the CNDREG register
according to the condition value. The CU assigns D (data) to
the DPS signal and activates the PU. At this time, the InstrMux
sends a selected instruction to the PU according to the
CNDREG register value.

Second, an instruction based on the value determined in
advance by the PU can be chosen. This is called position-based
partitioned SIMD control. An example for this step is shown in
Fig. 6(c). Based on the type and structure of the operation, the
CU can previously save a value for selecting an instruction in
the POSREG register, which is allotted 2 bits by each of the
PUs if the PU determines the instruction in advance. The CU
assigns P (position) to the DPS signal and activates the PU. At
this time, the InstrMux sends a selected instruction to the PU
according to the POSREG register value. The implementation
of the P-SIMD control method is possible when this method is

712 Chun-Gi Lyuh et al. ETRI Journal, Volume 31, Number 6, December 2009

Fig. 6. Dynamically partitioned SIMD processor architecture.

Processing unit 0

Control unit

Processing unit 1

InstrMux InstrMux

CNDREG[1:0] CNDREG[1:0]

DPmux DPmux

DPS
Program
memory SI

POSREG2
[1:0]

POSREG1
[1:0]

In
st

ru
ct

io
n

1
In

st
ru

ct
io

n
2

In
st

ru
ct

io
n

3
In

st
ru

ct
io

n
4

(a) Processor structure

Control unit

D

0

2 0

2

DPS
Program
memory SI

POSREG2
[1:0]

POSREG1
[1:0]

InstrMux InstrMux

DPmux DPmux

Processing unit 0 Processing unit 1

CNDREG[1:0] CNDREG[1:0]

a:
=b

+c

a:
=b

-c

d:
=e

+f

d:
=e

-f

a:=b+c d:=e+f

(b) Data-based partitioned SIMD control

InstrMux InstrMux

DPmux DPmux

P

1 0

0 1

Control unit

DPS
Program
memory SI

POSREG2
[1:0]

POSREG1
[1:0]

a:
=b

+c

a:
=b

-c

d:
=e

+f

d:
=e

-f

Processing unit 0 Processing unit 1

CNDREG[1:0] CNDREG[1:0] a:=b+c a:=b–c

(c) Position-based partitioned SIMD control

InstrMux InstrMux

DPmux DPmux

S

3 3

3

Control unit

DPS
Program
memory SI

POSREG2
[1:0]

POSREG1
[1:0]

Processing unit 0 Processing unit 1

CNDREG[1:0] CNDREG[1:0] d:=e–f d:=e–f

(d) SIMD control

a:
=b

+c

a:
=b

-c

d:
=e

+f

d:
=e

-f

used.
Finally, all of the PUs can operate the same instruction by the

SIMD control method. This is called SIMD control.
Figure 6(d) shows this example. The CU assigns S (SIMD) to
the DPS signal for the SIMD control, sets a selected value to
the SI signal for the selection of the instruction, and activates
the PUs. At this time, the InstrMux sends a selected instruction
to the PUs. All the PUs receive the same instruction.

III. ETRI Reconfigurable Processor

We have developed a DP-SIMD-based ETRI reconfigurable
processor (ERP) that has a high data capacity for video
CODECs.

1. Overall Architecture

Figure 7 shows the overall architecture of the ERP. The CU
is for an external I/O and control of the internal PU array
(PUA). It is a 32-bit custom processor which controls the
processing unit array configuration memory and the
processing unit array data memory in parallel with the
execution of a program for self operation using the control unit
program memory and the control unit data memory.

The architecture of the PUA is depicted in Fig. 8. The PUA
has a two-dimensional array architecture for parallel
processing. It has four rows and can also be designed using a
variable dimensional value according to the performance
requirement. In this paper, the PUA has a 4 × 16 array. In
addition, arrays of 4×4, 4×8, 4×32, and so on are available.
Two types of connections among the PUs are supported for
an efficient data transfer between them. First, Fig. 8(a) shows
a mesh-type interconnection architecture for a basic data
transfer between the PUs comprising a two-dimensional array,
and Fig. 8(b) shows a ring-type interconnection for various
data exchanges.

Fig. 7. Architecture of the ETRI reconfigurable processor.

On-chip interconnection

Control unit

Processing unit array

Control
unit data
memory

Control unit
program
memory

ETRI reconfigurable processor

control
data

Processing unit
array data
memory

Processing unit
array

configuration
memory

ETRI Journal, Volume 31, Number 6, December 2009 Chun-Gi Lyuh et al. 713

Fig. 8. Architecture of processing unit array.

PU PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

0 0 0 0 0

0

0

0

0

0

0

0

0

0 0 0 0 0

PU PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

PU PU PU PU PU

0

0

0

0

0

0

0

0

(a) Mesh-type interconnection

(b) Ring-type interconnection

2. Special Instructions for Multimedia Operation

The ERP has the basic instructions for general operation as
well as special instructions considering multimedia
applications.

Table 1 shows the special instructions which consist of 7
individual instructions. The MAX, MIN, and CLIP instructions
reduce the operations for comparing the sizes among several
values. The SUBABS instruction could be useful with
subtraction and absolute operations used in motion estimation,
IP, and so on of H. 264. The SRAC instruction is useful in
division operations. A division operation is generally achieved
with a right-shift operation. In the case of rounding off the
result of a division, half of the divisor is added to the operand
before division, and then the total value is divided by the shift
operation. The SRAC instruction performs division in one
operation.

The CMP instruction compares the sizes of two values.
Because processors have PUs performing the same instructions,
a conditional jump is not available. This limitation could be
solved using a conditional operation such as the CMP. When
the CMP is carried out, the result of the operation is saved in a
condition register file, and the saved value is used to decide the
execution of other operations. In addition, the value saved in
the conditional register file is used for the DP-SIMD control
discussed in section II.

Table 1. Special instructions.

Instruction Description

MAX a b > c c := (a > b) ? a : b

MIN a b > c c := (a < b) ? a : b

CLIP a b > c c := max(0, min(a, b))

SUBABS a b > c c := abs(a –b)

SUBABS4 a b c d > e e := abs(a – b) + abs(c – d)

SRAC a b > c c := a >> b + carry

CMP a cnd b > c c := (a cnd b) ? 1 : 0

3. Processing Unit Architecture

The PU basically performs 16-bit operations. Figure 9 shows
the architecture of the PU. The PU has an arithmetic logic unit
(ALU) for basic arithmetic and logical operations and includes
a 16-bit multiplier and shifter. The register file consists of 32
16-bit register files that are able to input and output data
through 5-read and 2-write ports in order to perform data
transfers and operations simultaneously. In addition, the
conditional register file is used for a conditional operation and
dynamically partitioned SIMD control. The PU also has a
16-bit adder to improve the performance of the arithmetic
operation and to carry out SRAC operations.

Fig. 9. Processing unit architecture.

Adder

From data memory,
control unit, other

PUs

To data memory,
other PUs

ALU Multiplier Shifter

cIN

Register file
din dst

srcA srcB srcC ext srcD

From carry register
0 1

Condition register file

dstWE dinWE

4. Software Development Tools for ERP

A software developer tool is supported. First, an ERP
assembler is available for compiling the basic assembly level
construction and high-level language-like construction. It is
also able to detect a hazard from the pipeline processing in the

714 Chun-Gi Lyuh et al. ETRI Journal, Volume 31, Number 6, December 2009

Fig. 10. ERP simulator screenshots.

(a) Script and memory view

(b) Processing unit array view

CU and the PU, and it achieves a simple optimization of the
source code. It finally outputs image files for the CU program
memory and PUA configuration memory. Second, an ERP
simulator is available for the simulation of the operation result
received from the images generated by the assembler. The
simulator is able to show the internal memory of the CU and
PUA, the register, and so on. It also can simulate the data
exchange between an external device and the ERP as well as
the output of the liquid crystal display controller. Figure 10(a)
shows a script for the simulation of the data exchange between
the input and output of the ERP and an internal memory state.
Figure 10(b) shows a window to display the memory and
register state of the PUA.

IV. Experimental Results

We implemented the ERP with a 4 × 16 PUA structure using
Verilog HDL. Table 2 shows the synthesis results of the ERP.
The total internal memory is 305 kB, total cell area is 17.5 mm2,
and the gate count is 6.2 million. The operation frequency is up
to 214 MHz. For the previously described results, the ERP was

Table 2. Synthesis results.

Synthesis tool
Synopsys
DC Ultra

Process 90 nm CMOS

Processing unit array size 64 (4×16)

Control unit program memory 32 kB

Control unit data memory 4 kB

Processing unit array configuration memory 13 kB

Processing unit array data memory 256 kB

Memory
size

Total memory area 13.4 mm2

Total cell area 17.5 mm2

Total gate count 6.2 M

Maximum clock speed 214 MHz

Table 3. H.264 decoder MC & ITQ processing time.

Function

Type Name
SIMD
(cycle)

P-SIMD
(cycle)

DP-SIMD
(cycle)

GetTable 141 141 141

Hadamard_Luma 181 181 149

Hadamard_Chroma 63 63 47

MemoryAlign 2,091 2,091 1,143

D

HalfQuarterPel 7,048 7,048 6,724

ReadDC_Luma 37 31 31

WriteDC_Luma 28 20 20P

WriteDC_Chroma 10 6 6

IQ_Luma 210 210 210

IQ_Chroma 107 107 107

IDCT 433 433 433

MakeRecon 149 149 149

S

Etc. 10 10 10
Total

(instruction count)
10,508

(10,508)
10,490

(10,562)
9,170

(10,898)

synthesized using a 90 nm CMOS technology by the Synopsys
Design Compiler Ultra.

Table 3 shows the processing time (operation cycles) and
instruction count for the MC and ITQ operations with 16
macroblocks. The operation cycles were counted through RTL
simulations using ModelSim and the function type indicates
the characteristic of the parallelism in each function block.
While all the three control methods, SIMD, P-SIMD, and
DP-SIMD, showed the same performance for S type functions,
P-SIMD and DP-SIMD reduced the required operation cycles
for P type functions by 40% over SIMD, and DP-SIMD

ETRI Journal, Volume 31, Number 6, December 2009 Chun-Gi Lyuh et al. 715

Table 4. Comparisons of Xtensa and ERP.

Processor name Xtensa ERP
Cycle count 15.342M 0.227M

Gate count 25,000 Logic 1.45M
Memory 4.7M

reduced the required operation cycles for D type functions by
4.8% over SIMD and P-SIMD. Even though the instruction
count for DP-SIMD was increased 3.7% over SIMD and 3.2%
over P-SIMD, the total processing time for DP-SIMD was
improved more than 14% over SIMD and P-SIMD control
methods. Consequently, the ERP consumes only 3.9 ms for 1
frame of D1 size when ITQ and MC for H.264 are operated
at 200 MHz.

Table 4 compares the operation cycle and the area for the
MC and ITQ operations with 1 frame of CIF size between the
Xtensa processor and the ERP. The Xtensa processor has a
basic instruction set [6]. The ERP gate count is 58 times larger
and the operation cycle is 68 times faster than those of Xtensa.
This demonstrates that the operation of ERP is more efficient
than that of Xtensa.

V. Conclusion

In this paper, we proposed a DP-SIMD control method to
improve the operation efficiency of the existing SIMD control
method. In the ETRI reconfigurable processor we developed,
the processing units performing the instructions for video data
processing are implemented in an array configuration, and the
array is controlled through the DP-SIMD method.

We can apply the ERP to multimedia data processing as well
as various applications which need to process mass data in
parallel with conditional operations. We expect the proposed
control method to be applied to other parallel processor
architectures to enhance performance.

In future work, we need to develop an optimized C compiler
for the DP-SIMD processor and a low power consumption
architecture for mobile devices.

References

[1] M. Horowitz et al., “H.264/AVC Baseline Profile Decoder
Complexity Analysis,” IEEE Trans. Circuits Syst. for Video
Technol., vol. 13, July 2003, pp. 704-716.

[2] M. Oh et al., “Design of High-Speed CAVLD Decoder
Architecture for H.264/AVC,” ETRI J., vol. 30, no. 1, Feb. 2008,
pp. 167-169.

[3] D. Yeo and H. Shin, “High Throughput Parallel Decoding

Method for H.264/AVC CAVLC,” ETRI J., vol. 31, no. 5, Oct.
2009, pp. 510-517.

[4] K.S. Choi and S.J. Ko, “Adaptive Scanning Based on a
Morphological Representation of Coefficients for H.264/AVC,”
ETRI J., vol. 31, no. 5, Oct. 2009, pp. 607-609.

[5] Y. Kun, Z. Chun, and W. Zhihua, “Application Specific Processor
Design For H.264 Baseline Profile Bit-Stream Decoding,” Proc.
the 8th Int. Conf. Signal Process., 2006, pp. 16-20.

[6] J.H. Han et al., “Application Specific Processor Design for H.264
Decoder with a Configurable Embedded Processor,” ETRI J., vol.
27, no. 5, Oct. 2005, pp. 491-496.

[7] G. Estrin, “Organization of Computer Systems: The Fixed-Plus-
Variable Structure Computer,” Proc. the Western Joint Computer
Conf., 1960, pp. 33-40.

[8] G. Estrin and C.R. Viswanathan, “Organization of a Fixed-Plus-
Variable Structure Computer for Computation of Eigenvalues and
Eigenvectors of Real Symmetric Matrices,” J. ACM, vol. 9, no.1,
Jan. 1962, pp. 41-60.

[9] H. Singh et al., “MorphoSys: An Integrated Reconfigurable
System for Data-Parallel and Computation-Intensive
Application,” IEEE Trans. Computers, vol. 49, no. 5, May 2000,
pp. 465-481.

[10] T. Miyamori and K. Olukotun, “REMARC: Reconfigurable
Multimedia Array Coprocessor,” IEICE Trans. Inf. Syst., vol.
E82-D, no. 2, 1999, pp. 389-397.

[11] G. Sullivan, A. Luthra, and T. Wiegand, “Draft of Version 4 of
ISO/IEC 14496-10(E),” Joint Video Team (JVT) of ISO/IEC
MPEG and ITU_T VCEG, Apr. 2005.

[12] JVT H.264/AVC Joint Model Reference Software version 11.0,
http://iphome.hhi.de/suehring/tml/download/old_jm/jm11.0.zip, Aug.
2007.

Chun-Gi Lyuh received the BS degree in
computer engineering from Kyungpook
National University (KNU), Korea, in 1998. He
received the MS and PhD degrees in electrical
engineering and computer science from the
Korea Advanced Institute of Science and
Technology (KAIST) in 2000 and 2004,

respectively. He joined ETRI in 2004 as a senior researcher. His current
research interests include reconfigurable processor and vision SoC
platform for intelligent vehicles.

716 Chun-Gi Lyuh et al. ETRI Journal, Volume 31, Number 6, December 2009

Jung-Hee Suk received the BS, MS, and PhD
degrees in electronics engineering from
Kyungpook National University (KNU) in
Daegu, Korea, in 2001, 2003, and 2007,
respectively. His doctoral research involved the
H.264/AVC codec algorithm. He joined ETRI
in February 2007 as a researcher in the NT

Convergence Components Research Department. His current research
interests include multimedia codec, parallel processing of media data,
recognition algorithm, and multimedia SoC.

Ik-Jae Chun received the BS, MS, and PhD
degrees in electronics engineering from
Chungnam National University (CNU) in
Daejeon, Korea, in 1998, 2000, and 2006,
respectively. He joined ETRI in September
2006 as a senior researcher in the NT
Convergence Components Research

Department. His current research interests include digital system
architecture, communication system design, multimedia SoC, and
vision SoC. He is a member of the IEEE.

Tae Moon Roh received the BS, MS, and PhD
degrees in electrical engineering and computer
science from Kyungpook National University,
Daegu, Korea, in 1984, 1986, and 1998,
respectively. His doctoral research involved the
reliability of ultrathin oxide grown by high
pressure oxidation and followed by rapid

thermal nitridation and hot carrier effects of MOSFET with the oxide
as the gate insulator. In 1988, he joined ETRI, Daejeon, Korea. Since
1988, he has been working at Convergence Components and Materials
Research Laboratory, where he has been engaged in research
developing process technology for digital and analog CMOS ICs,
improving the reliability of ultra-thin gate oxides, and evaluating hot
carrier effects of MOSFETs. His current interests are low-power digital
circuits and multimedia SoCs with reconfigurable processors. In
addition, he is working on the development of a vision SoC platform
for intelligent vehicles.

