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In this paper, we propose a novel reconfigurable 
processor using dynamically partitioned single-instruction 
multiple-data (DP-SIMD) which is able to process 
multimedia data. The SIMD processor and parallel SIMD 
(P-SIMD) processor, which is composed of a number of 
SIMD processors, are usually used these days. But these 
processors are inefficient because all processing units 
(PUs) should process the same operations all the time. 
Moreover, the PUs can process different operations only 
when every SIMD group operation is predefined. We 
propose a processor control method which can partition 
parallel processors into multiple SIMD-based processors 
dynamically to enhance efficiency. For performance 
evaluation of the proposed method, we carried out the 
inverse transform, inverse quantization, and motion 
compensation operations of H.264 using processors based 
on SIMD, P-SIMD, and DP-SIMD. Experimental results 
show that the DP-SIMD control method is more efficient 
than SIMD and P-SIMD control methods by about 15% 
and 14%, respectively. 
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I. Introduction 

H.264 is an open, licensed standard which supports most of 
the efficient video compression techniques available today. In 
addition, the higher performance in video compression and 
decompression is required, the more complex hardware is 
needed as in [1]. Various hardware implementation methods 
for H.264 have been proposed [2]-[6]. Some partial or full 
H.264 encoders or decoders in [2]-[4] were developed by using 
an application-specific integrated circuit (ASIC) design method. 
Although these encoders or decoders implemented by ASIC 
are very good for high performance, they have limitations in 
flexibility when some modifications are needed. On the other 
hand, an application specific instruction set processor (ASIP) 
[5] and configurable processor [6] design methods have some 
flexibility, but their performance is not as good as that of the 
ASIC design method.  

Figure 1 shows the relations between flexibility and 
performance according to the implementation methods. A 
general purpose processor is flexible enough to be applied to 
various systems in various fields, but its performance is low. 
An ASIP can adopt a more optimized instruction set than a  
 

 

Fig. 1. Trade-off between flexibility and performance. 
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Fig. 2. Various control methods. 
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general purpose processor can for performance enhancement. 
However, an ASIP also has the same disadvantage in 
performance that the general purpose processor has. Although 
an ASIC has higher performance than other circuits due to its 
optimized hardware implementation for each application, it 
cannot be altered flexibly for various applications. A 
reconfigurable processor takes advantage of the general 
purpose processor and ASIC to achieve high performance with 
reasonable flexibility. A reconfigurable architecture was first 
proposed by Estrin [7], [8]. The reconfigurable architecture is a 
hybrid computer architecture composed of fixed and variable 
blocks and supports flexibility in software and the speed of the 
hardware. Research on the flexibility and performance of the 
reconfigurable architecture has been pursued. 

A reconfigurable processor generally has an array 
architecture for its operation performance and requires a smart 
control method for its array processors in order to improve its 
operation efficiency. We can classify the control methods into 
three main groups: single-instruction multiple-data (SIMD), 
multiple-instructions multiple-data (MIMD), and parallel 
SIMD (P-SIMD) control methods. These methods are shown 
in Fig. 2. In Fig. 2, PU denotes processing unit (PU), and thick 
lines denote the instructions to operate in each PU. The SIMD 
control method has a short length instruction, and all the PUs 
work using the same operation. Therefore, when various 
independent operations are needed, the method causes a 
reduction in processing performance. Also, the MIMD control 
method can improve the processing performance by using 
different instructions in each of the PUs. However, in 
reconfigurable processor architecture, only one control unit 
(CU) controls every PU for the different instructions. That is, a 
PU cannot work independently. As a result, the operations are 
inefficient if the instruction cannot be predefined according to 
the condition of the data. The method also has problems of 
long instructions, such as area overhead. 

To solve the problems of the SIMD and MIMD control 
methods, we can use a P-SIMD control method. The parallel 
processors are partitioned into several SIMD groups when they 

are designed, and each partitioned SIMD group uses the same 
instructions. For example, MorphoSys, one of well-known 
reconfigurable architectures, uses the P-SIMD control method 
to control 64 reconfigurable cells [9]. REMARC uses both the 
P-SIMD and MIMD control methods to control 64 
nanoprocessors [10]. However, in P-SIMD control methods, 
the operations are still inefficient if the instructions cannot be 
predefined according to the condition of the data. Therefore, 
we propose a dynamically partitioned SIMD (DP-SIMD) 
control method and implement an architecture supporting the 
control method to solve the problems of the existing SIMD, 
MIMD, and P-SIMD control methods. 

The rest of this paper is organized as follows. In section II, a 
DP-SIMD control method is proposed. Section III presents the 
reconfigurable processor based on the proposed control 
method. Section IV shows the experimental results. Finally, 
section V concludes this paper. 

II. Dynamically Partitioned SIMD Architecture 

1. Dynamically Partitioned SIMD Control Method 

The H.264 decoder is composed of variable length decoding 
(VLD), inverse transform and quantization (ITQ), motion 
compensation (MC), intra prediction (IP), and a deblocking 
filter (DF) [11], [12]. Among these, VLD is not compatible 
with a parallel process, and ITQ can promote operation 
performance using a SIMD control method. However, the IP, 
MC, and DF change operations according to conditions such as 
prediction mode and boundary strength. These conditional 
operations selected according to the conditions reduce the 
efficiency of the SIMD operation. 

Figure 3 shows an example of the conditional operations to 
obtain the variables a and d using different operands and 
operators depending on the condition. 

Because all of the PUs composed in parallel for the SIMD 
control method generally perform the same operation at the 
same time, all of the PUs have to perform all operations of each  
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Fig. 3. An example of conditional operations. 
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Fig. 4. Conditional operation of the SIMD control method. 
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Fig. 5. Conditional operation of the DP-SIMD control method.
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of the conditions including other conditions that are not related 
to a given processing flow. This is the reason for the low 
operation efficiency of the SIMD control method. Figure 4 
shows the operation method when the previous example is 
carried out under a parallel processor of the existing SIMD 
control method. First, the condition flag register CNDREG is 
set true after the decision of whether the condition is zero is 
made, and the operation result is then reflected according to the 
CNDREG while the operation a := b + c under first condition 
is performed. After that, the second, third, and fourth conditions 
are applied in the same manner. All PUs should perform all 
these operations, and it takes 8 steps including 4 steps for 
computations. Although the P-SIMD and the MIMD control 
methods can enhance the performance when the categories of 
operations for each PU can be predecided before their 
operation, they achieve almost the same performance as SIMD 
in other cases. 

On the other hand, PUs in DP-SIMD can select the 
instructions according to the data condition while their 
operations are executed. Therefore, the parallel processors can 
be dynamically partitioned into multiple identical instruction 
groups of SIMD at any time. This is why we named the 
proposed method dynamically partitioned SIMD. In DP-SIMD 
processors, the performance can be enhanced because the PUs 

do not have to process useless operations. Figure 5 shows an 
operation method when applying the previous example using  
the proposed DP-SIMD control method. First, each PU 
estimates the condition value through the SIMD operation and 
then sets the CNDREG value. After that, it performs the 
operation through the DP-SIMD control method according to 
the CNDREG value. In this case, two steps are sufficient for 
the processing time, including only one step for computation. 
When four instructions can be selected at a time in an 
implemented DP-SIMD processor, the operation efficiency of 
DP-SIMD would be enhanced 4 times compared to SIMD in 
the ideal. 

2. Dynamically Partitioned SIMD Architecture 

By applying the DP-SIMD control method in a parallel 
processor, the problem of low operation efficiency caused by 
the existing SIMD control method is solved. The instruction for 
the DP-SIMD is created by combining various instructions into 
one, as in the case of a very long instruction word (VLIW) 
processor. But, unlike the VLIW, which determines the order 
according to the function block, the PU of a DP-SIMD directly 
chooses an instruction using the conditions and then performs 
its operation. 

Figure 6(a) shows a processor structure of the DP-SIMD 
control method. Several PUs are composed in parallel, and a 
CU is used to control them. The CU reads and transmits the 
instructions that the PUs will carry out from the program 
memory and controls the entire operation. 

There are three possible means of control in the DP-SIMD 
control method. First, an instruction based on the value 
calculated by a PU can be chosen. This is called data-based 
partitioned SIMD control. An example for this step is shown in 
Fig. 6(b). In the case of the previous example for the 
conditional operation, a PU sets up the CNDREG register 
according to the condition value. The CU assigns D (data) to 
the DPS signal and activates the PU. At this time, the InstrMux 
sends a selected instruction to the PU according to the 
CNDREG register value. 

Second, an instruction based on the value determined in 
advance by the PU can be chosen. This is called position-based 
partitioned SIMD control. An example for this step is shown in 
Fig. 6(c). Based on the type and structure of the operation, the 
CU can previously save a value for selecting an instruction in 
the POSREG register, which is allotted 2 bits by each of the 
PUs if the PU determines the instruction in advance. The CU 
assigns P (position) to the DPS signal and activates the PU. At 
this time, the InstrMux sends a selected instruction to the PU 
according to the POSREG register value. The implementation 
of the P-SIMD control method is possible when this method is  
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Fig. 6. Dynamically partitioned SIMD processor architecture.
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used. 
Finally, all of the PUs can operate the same instruction by the 

SIMD control method. This is called SIMD control.     
Figure 6(d) shows this example. The CU assigns S (SIMD) to 
the DPS signal for the SIMD control, sets a selected value to 
the SI signal for the selection of the instruction, and activates 
the PUs. At this time, the InstrMux sends a selected instruction 
to the PUs. All the PUs receive the same instruction.  

III. ETRI Reconfigurable Processor 

We have developed a DP-SIMD-based ETRI reconfigurable 
processor (ERP) that has a high data capacity for video 
CODECs. 

1. Overall Architecture 

Figure 7 shows the overall architecture of the ERP. The CU 
is for an external I/O and control of the internal PU array 
(PUA). It is a 32-bit custom processor which controls the 
processing unit array configuration memory and the 
processing unit array data memory in parallel with the 
execution of a program for self operation using the control unit 
program memory and the control unit data memory. 

The architecture of the PUA is depicted in Fig. 8. The PUA 
has a two-dimensional array architecture for parallel 
processing. It has four rows and can also be designed using a 
variable dimensional value according to the performance 
requirement. In this paper, the PUA has a 4 × 16 array. In 
addition, arrays of 4×4, 4×8, 4×32, and so on are available. 
Two types of connections among the PUs are supported for 
an efficient data transfer between them. First, Fig. 8(a) shows 
a mesh-type interconnection architecture for a basic data 
transfer between the PUs comprising a two-dimensional array, 
and Fig. 8(b) shows a ring-type interconnection for various 
data exchanges. 
 

 

Fig. 7. Architecture of the ETRI reconfigurable processor. 
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Fig. 8. Architecture of processing unit array. 
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2. Special Instructions for Multimedia Operation 

The ERP has the basic instructions for general operation as 
well as special instructions considering multimedia 
applications. 

Table 1 shows the special instructions which consist of 7 
individual instructions. The MAX, MIN, and CLIP instructions 
reduce the operations for comparing the sizes among several 
values. The SUBABS instruction could be useful with 
subtraction and absolute operations used in motion estimation, 
IP, and so on of H. 264. The SRAC instruction is useful in 
division operations. A division operation is generally achieved 
with a right-shift operation. In the case of rounding off the 
result of a division, half of the divisor is added to the operand 
before division, and then the total value is divided by the shift 
operation. The SRAC instruction performs division in one 
operation. 

The CMP instruction compares the sizes of two values. 
Because processors have PUs performing the same instructions, 
a conditional jump is not available. This limitation could be 
solved using a conditional operation such as the CMP. When 
the CMP is carried out, the result of the operation is saved in a 
condition register file, and the saved value is used to decide the 
execution of other operations. In addition, the value saved in 
the conditional register file is used for the DP-SIMD control 
discussed in section II.  

Table 1. Special instructions. 

Instruction Description 

MAX a b > c c := (a > b) ? a : b 

MIN a b > c c := (a < b) ? a : b 

CLIP a b > c c := max(0, min(a, b)) 

SUBABS a b > c c := abs(a –b) 

SUBABS4 a b c d > e e := abs(a – b) + abs(c – d) 

SRAC a b > c c := a >> b + carry 

CMP a cnd b > c c := (a cnd b) ? 1 : 0 

 

 
3. Processing Unit Architecture 

The PU basically performs 16-bit operations. Figure 9 shows 
the architecture of the PU. The PU has an arithmetic logic unit 
(ALU) for basic arithmetic and logical operations and includes 
a 16-bit multiplier and shifter. The register file consists of 32 
16-bit register files that are able to input and output data 
through 5-read and 2-write ports in order to perform data 
transfers and operations simultaneously. In addition, the 
conditional register file is used for a conditional operation and 
dynamically partitioned SIMD control. The PU also has a  
16-bit adder to improve the performance of the arithmetic 
operation and to carry out SRAC operations. 
 

 

Fig. 9. Processing unit architecture. 
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4. Software Development Tools for ERP 

A software developer tool is supported. First, an ERP 
assembler is available for compiling the basic assembly level 
construction and high-level language-like construction. It is 
also able to detect a hazard from the pipeline processing in the  
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Fig. 10. ERP simulator screenshots. 

(a) Script and memory view 

(b) Processing unit array view 

 
 
CU and the PU, and it achieves a simple optimization of the 
source code. It finally outputs image files for the CU program 
memory and PUA configuration memory. Second, an ERP 
simulator is available for the simulation of the operation result 
received from the images generated by the assembler. The 
simulator is able to show the internal memory of the CU and 
PUA, the register, and so on. It also can simulate the data 
exchange between an external device and the ERP as well as 
the output of the liquid crystal display controller. Figure 10(a) 
shows a script for the simulation of the data exchange between 
the input and output of the ERP and an internal memory state. 
Figure 10(b) shows a window to display the memory and 
register state of the PUA. 

IV. Experimental Results 

We implemented the ERP with a 4 × 16 PUA structure using 
Verilog HDL. Table 2 shows the synthesis results of the ERP. 
The total internal memory is 305 kB, total cell area is 17.5 mm2, 
and the gate count is 6.2 million. The operation frequency is up 
to 214 MHz. For the previously described results, the ERP was  

Table 2. Synthesis results. 

Synthesis tool 
Synopsys 
DC Ultra 

Process 90 nm CMOS

Processing unit array size 64 (4×16) 

Control unit program memory 32 kB 

Control unit data memory 4 kB 

Processing unit array configuration memory 13 kB 

Processing unit array data memory 256 kB 

Memory 
size 

Total memory area 13.4 mm2 

Total cell area 17.5 mm2 

Total gate count 6.2 M 

Maximum clock speed 214 MHz 

Table 3. H.264 decoder MC & ITQ processing time. 

Function 

Type Name 
SIMD 
(cycle) 

P-SIMD
(cycle) 

DP-SIMD
(cycle) 

GetTable 141 141 141

Hadamard_Luma 181 181 149

Hadamard_Chroma 63 63 47

MemoryAlign 2,091 2,091 1,143

D 

HalfQuarterPel 7,048 7,048 6,724

ReadDC_Luma 37 31 31

WriteDC_Luma 28 20 20P 

WriteDC_Chroma 10 6 6

IQ_Luma 210 210 210

IQ_Chroma 107 107 107

IDCT 433 433 433

MakeRecon 149 149 149

S 

Etc. 10 10 10
Total 

(instruction count) 
10,508 

(10,508) 
10,490

(10,562)
9,170

(10,898)

 

synthesized using a 90 nm CMOS technology by the Synopsys 
Design Compiler Ultra. 

Table 3 shows the processing time (operation cycles) and 
instruction count for the MC and ITQ operations with 16 
macroblocks. The operation cycles were counted through RTL 
simulations using ModelSim and the function type indicates 
the characteristic of the parallelism in each function block. 
While all the three control methods, SIMD, P-SIMD, and  
DP-SIMD, showed the same performance for S type functions, 
P-SIMD and DP-SIMD reduced the required operation cycles 
for P type functions by 40% over SIMD, and DP-SIMD  
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Table 4. Comparisons of Xtensa and ERP. 

Processor name Xtensa ERP 
Cycle count 15.342M 0.227M 

Gate count 25,000 Logic 1.45M 
Memory 4.7M 

 

reduced the required operation cycles for D type functions by 
4.8% over SIMD and P-SIMD. Even though the instruction 
count for DP-SIMD was increased 3.7% over SIMD and 3.2% 
over P-SIMD, the total processing time for DP-SIMD was 
improved more than 14% over SIMD and P-SIMD control 
methods. Consequently, the ERP consumes only 3.9 ms for 1 
frame of D1 size when ITQ and MC for H.264 are operated 
at 200 MHz. 

Table 4 compares the operation cycle and the area for the 
MC and ITQ operations with 1 frame of CIF size between the 
Xtensa processor and the ERP. The Xtensa processor has a 
basic instruction set [6]. The ERP gate count is 58 times larger 
and the operation cycle is 68 times faster than those of Xtensa. 
This demonstrates that the operation of ERP is more efficient 
than that of Xtensa. 

V. Conclusion 

In this paper, we proposed a DP-SIMD control method to 
improve the operation efficiency of the existing SIMD control 
method. In the ETRI reconfigurable processor we developed, 
the processing units performing the instructions for video data 
processing are implemented in an array configuration, and the 
array is controlled through the DP-SIMD method. 

We can apply the ERP to multimedia data processing as well 
as various applications which need to process mass data in 
parallel with conditional operations. We expect the proposed 
control method to be applied to other parallel processor 
architectures to enhance performance. 

In future work, we need to develop an optimized C compiler 
for the DP-SIMD processor and a low power consumption 
architecture for mobile devices. 
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