• 제목/요약/키워드: Damping Error

검색결과 201건 처리시간 0.024초

Optimum parameters and performance of tuned mass damper-inerter for base-isolated structures

  • Jangid, Radhey Shyam
    • Smart Structures and Systems
    • /
    • 제29권4호
    • /
    • pp.549-560
    • /
    • 2022
  • The optimum damping and tuning frequency ratio of the tuned mass damper-inerter (TMDI) for the base-isolated structure is obtained using the numerical searching technique under stationary white-noise and filtered white-noise earthquake excitation. The minimization of the isolated structure's mean-square relative displacement and absolute acceleration, as well as the maximization of the energy dissipation index, were chosen as the criteria for optimality. Using a curve-fitting technique, explicit formulae for TMDI damping and tuning frequency for white-noise excitation are then derived. The proposed empirical expressions for TMDI parameters are found to have a negligible error, making them useful for the effective design of base-isolated structures. The effectiveness of TMDI and its optimum parameters are influenced by the soil condition and isolation frequency, according to the comparison made of the optimized parameters and response with different soil profiles. The effectiveness of an optimally designed TMDI in controlling the displacement and acceleration response of the flexible isolated structure under real and pulse-type earthquakes is also observed and found to be increased as the inertance mass ratio increases.

IMM-based INS/EM-Log Integrated Underwater Navigation with Sea Current Estimation Function

  • Cho, Seong Yun;Ju, Hojin;Cha, Jaehyuck;Park, Chan Gook;Yoo, Kijeong;Park, Chanju
    • Journal of Positioning, Navigation, and Timing
    • /
    • 제7권3호
    • /
    • pp.165-173
    • /
    • 2018
  • Underwater vehicles use Inertial Navigation System (INS) with high-performance Inertial Measurement Unit (IMU) for high precision navigation. However, when underwater navigation is performed for a long time, the INS error gradually diverges, therefore, an integrated navigation method using auxiliary sensors is used to solve this problem. In terms of underwater vehicles, the vertical axis error is primarily compensated through Vertical Channel Damping (VCD) using a depth gauge, and an integrated navigation filter can be designed to perform horizontal axis error and sensor error correction using a speedometer such as Electromagnetic-Log (EM-Log). However, since EM-Log outputs the forward direction relative speed of the vehicle with respect to the sea and sea current, INS correction filter using this may cause a rather large error. Although it is possible to design proper filters if the exact model of the sea current is known, it is impossible to know the accurate model in reality. Therefore, this study proposes an INS/EM-Log integrated navigation filter with the function to estimate sea current using an Interacting Multiple Model (IMM) filters, and the performance of this filter is analyzed through a simulation performed in various environments.

단일 구동 3축 MEMS자이로스코프의 구적 오차 저감을 위한 설계 기법에 관한 연구 (A study on Quadrature error Reduction of Design Methodology in a Single Drive 3-Axis MEMS Gyroscope)

  • 박지원;딘 후사무드;이병렬
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.132-137
    • /
    • 2022
  • In this paper, we have studied the quadrature error reduction for the single drive 3-axis MEMS Gyroscope. There was a limitation of the previous study which is the z-axis quadrature error was large. To reduce this value, design methodologies were presented. And the methodologies included a different mesh application, z-rate spring structure change, and mass compensation for balancing of the structure. We conducted the modal analysis, drive mode analysis and sense mode analysis using COMSOL Multiphysics. As a result, a drive resonant frequency was 26003 Hz, with the x-sense, y-sense, z-sense being 26749 Hz, 26858 Hz, 26920 Hz, respectively. And the Mechanical sensitivity was computed at 2000 degrees per second(dps) input angular rate while the sensitivity for roll, pitch, and yaw was computed 0.011, 0.012, and 0.011 nm/dps respectively. And z-axis quadrature error was successfully improved, 2.78 nm to 0.95 nm, which the improvement rate was about 66 %.

M&S를 이용한 항공기용 통합형 전기식 구동장치의 동적 안전성 연구 (The Study of Dynamic Safety Using M&S for Integrated Electro-mechanical Actuator Installed on Aircraft)

  • 이석규;이병호;이증;강동석;최관호
    • 한국소음진동공학회논문집
    • /
    • 제25권2호
    • /
    • pp.108-115
    • /
    • 2015
  • Electro-mechanical actuator installed on aircraft consists of a decelerator which magnifies the torque in order to rotate an axis connected with aircraft control surface, a control section which controls the motor assembly through receiving orders from cockpit and a motor assembly which rotates the decelerator. Electro-mechanical actuator controls aircraft altitude, position, landing, takeoff, etc. It is an important part of a aircraft. Aircraft maneuvering causes vibrations to electro-mechanical actuator. Vibrations may result in structural fatigue. For that reason, it is necessary to analyze the system structural safety. In order to analyze the system structural safety. It is needed reasonable finite element model and structural response stress closed to real value. In this paper, analytic model is derived by using the simplified finite element model, and damping ratio which is closely related to response stress is derived by using modal test. So, we developed analytic model in less than 10 % error rate, compared with modal test. Vibration response stress close to real value was estimated from analytic model modified with modal experimental damping ratio. Estimation method for damping ratio with empirical formula was suggested partly. Finally, It was proved that electro-mechanical actuator had reasonable structure margin of safety at environmental random $3{\sigma}$ stress during life cycle.

충격햄머 실험에서 다자유도 주파수 응답스팩트럼의 개선 (An Enhancement of Multi-Dof Frequency Response Spectrum From Impact Hammer Testing)

  • 안세진;정의봉
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2002년도 추계학술대회논문집
    • /
    • pp.623-629
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function(FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

  • PDF

최적화 기법을 이용한 다자유도 충격응답스펙트럼의 오차 개선 (The Improvement of Multi-dof Impulse Response Spectrum by Using Optimization Technique)

  • 안세진;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제12권10호
    • /
    • pp.792-798
    • /
    • 2002
  • The spectrum of impulse response signal from an impulse hammer testing is widely used to obtain frequency response function (FRF) of the structure. However the FRFs obtained from impact hammer testing have not only leakage errors but also finite record length errors when the record length for the signal processing is not sufficiently long. The errors cannot be removed with the conventional signal analyzer which treats the signals as if they are always steady and periodic. Since the response signals generated by the impact hammer are transient and have damping, they are undoubtedly non-periodic. It is inevitable that the signals be acquired for limited recording time, which causes the finite record length error and the leakage error. In this paper, the errors in the frequency response function of multi degree of freedom system are formulated theoretically. And the method to remove these errors is also suggested. This method is based on the optimization technique. A numerical example of 3-dof model shows the validity of the proposed method.

외부가압 원추형 공기 베어링의 동특성에 관한 연구 (Dynamic Characteristics of an Externally Pressurized Conical Gas Bearing)

  • 박상신;김우정;김종원;한동철
    • Tribology and Lubricants
    • /
    • 제8권1호
    • /
    • pp.78-83
    • /
    • 1992
  • For excluding the effect of machining error such as perpendicularity, conical and spherical bearing has been used. In this paper, dynamic characteristics of the externally pressurized conical gas bearing for untraprecision main spindle is carried out based on the direct numerical method with assumption of point source. As a result of theoretical analysis, it is verified that coupled stiffness and damping exist and new design parameters for optimal condition of conical gas bearing are presented in dimensionless form.

무진동 크레인의 제어알고리즘 설계

  • 윤지섭;박병석;이재설
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.260-265
    • /
    • 1989
  • The micro-computer based automatic control of the overhead crane system is designed. Two control methodologies were suggested; the one is the anti-swing controller which improves poor damping characteristics of the crane and the other is the stop-position controller which minimizes the transportation position error. The input speed profile is automatically determined by the pre-programmed digital control algorithm. The experimental results show that these proposed controllers have excellent control performance as compared with those of the uncontrolled crane system.

  • PDF

Position estimation using combined vision and acceleration measurement

  • Nam, Yoonsu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.187-192
    • /
    • 1992
  • There are several potential error sources that can affect the estimation of the position of an object using combined vision and acceleration measurements. Two of the major sources, accelerometer dynamics and random noise in both sensor outputs, are considered. Using a second-order model, the errors introduced by the accelerometer dynamics are reduced by the smaller value of damping ratio and larger value of natural frequency. A Kalman filter approach was developed to minimize the influence of random errors on the position estimate. Experimental results for the end-point movement of a flexible beam confirmed the efficacy of the Kalman filter algorithm.

  • PDF

스텝방법을 이용한 광대역지진계 센서(STS-2)의 검증 (Calibration of the Broadband Sensor(STS-2) using the Step Method)

  • 류용규;이덕기;이전희;오석훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.11-18
    • /
    • 2001
  • A close examination of the step calibrations for STS-2 seismometers installed by KMA has been done to deduce the response parameters of those instrument including angular corner frequency, damping factor and coil constant factor. A non-linear least square inversion method has been apple iud to estimate these parameters. The estimated parameters coincide with the manufactory specification with less than 1% error. This method will be extended near- future to deduce the response parameters for SS-1 short period seismometer.

  • PDF