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ABSTRACT

There are several potential error sources that
can affect the estimation of the position of an ob-
ject using combined vision and acceleration mea-
surements. Two of the major sources, accelerometer
dynamics and random noise in both sensor outputs,
are considered. Using a second-order model, the er-
rors introduced by the accelerometer dynamics are
reduced by the smaller value of damping ratio and
larger value of natural frequency. A Kalman filter
approach was developed to minimize the influence
of random errors on the position estimate. Experi-
mental results for the end-point movement of a flexi-
ble beam confirmed the efficacy of the Kalman filter
algorithm.

INTRODUCTION

Accurate, high bandwidth measurement of po-
sition is essential to quality performance of a feed-
back position control system. In many cases it is not
convenient to make such measurements with direct
contact sensors, for example, in the case of the end
point of the robot. In these situations machine vi-
sion can be used. The sampling rate in machine
vision is restricted by video image processing time,
and the errors in such measurements may not be
acceptable. The use of an inertial measurement. be-
tween vision samples can be used to reduce both
of these difficulties. The use of an accelerometer
attached to the control object is used to supple-
ment the vision measurements to arrive at a higher
bandwidth and more accurate position estimator.
Accelerometers are also not perfect in at least two
ways. Accelerometers have limited bandwidth and

there is noise in the accelerometer output.

The errors introduced by the accelerometer dy-
namics are considered using a second-order model
[7]. In this analysis, the error magnitude caused by
imperfect accelerometer dynamics is reduced by in-
creases in the natural frequency and decreases in the
damping ratio for frequencies well below the natural
frequency. In the next section, a Kalman filter al-
gorithm for minimizing the effects of random errors
in both sensor outputs on the position estimate is
developed. Finally, for an experimental verification,
the end point displacement of a flexible beam is es-
timated by using a piezoresistive type accelerometer
and landmark tracking system (LTS). The LTS is
a grey-scale industrial vision system using pinhole

imaging [1, 5].

APPLICATION OF KALMAN FILTER
TO POSITION ESTIMATION

Consider now an one dimensional dynamic sys-
tem in Fig. 1 used to estimate the position of an
object based on the output of an accelerometer and
a vision system. The state representation of such a

dynamic system is
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Fig. 1 One dimensional dynamic system
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% = measured position
u = measured acceleration
w = error in acceleration measurement

v = error in position measurement

It will be assumed that the error is "white noise",
which means that the subsequent analysis considers
errors caused only by random effects, and not the
effects of dynamics considered earlier, or any other
systematic errors in the sensors.

If we assume T and T, be the sample time in-
tervals for the accelerometer and vision system re-
spectively, where there is an integer N such that

Ti= NT, then the system dynamics is changed to

(3]
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where now zy and zy,; are the current and next
state respectively. This sampling procedure is de-
scribed in Fig. 2. Becanse a vision measurement is
available only at every T, second, the measurement

equation is given as
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Fig.2 Sampling of a vision and accelerometer data
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During the interval (kNT, (k+1)NT), during
which time no vision measurement made, the esti-
mate of state x, and error covariance P grows ac-

cording to [4]

Iy 1 = Fiy + Guy (5)
Py., = FP.FT + GR,GT

where

Iy = estimate of the state at t = kT
Ry = E{ww'}
e P P.
— o — Mo — )Y = vk yvk
Pu= Bl 20— 50"} = [ 2]

After some matrix manipulations, the relation-
ship between the initial value of Pyy and the final
value of P(’kH)N (at NT~, or T; ,i.e. error covari-
ance matrix just before the vision measurement at
t = (k + 1)NT) is given by

Py = @1Rw + Py + 2NTPyuoy + N°T?Pun
P;v(krvl)N = 3'2Rw + Py\sz + NTkaN
Pliciyny = aaRw + Puy
(6)
where
a; = N®T%/3 —~ NT4/12
ag = N2T3/2
ay = NT?
When a vision measurement is available, the
estimate of state, is modified by the measurement

update equation.

)N = Egeryy Lo {zeo py — gy} (7)
where
Ly = P(_k«l)NHT{HP(ik*I)NHT +RJ (8)
And error covariance matrix P is updated by
Proooy = {1 = Laen HYP Gy« )
where N
R, = E{w'}

Lk yx = Kalman filter gain

Because the above system is observable, the
steady state Kalman filter gain and error covari-
ance exist. Fig. 3 shows the typical variation of

the crror covariance of position, y, at steady state



versus time assuming that initially there is no er-
ror. Although the graph shows a continuous curve
for Py, a sample data system is being considered,
so that only discrete values at intervals T are ap-
propriate. The assumption of constant acceleration
between samples is implicit. Because this assump-
tion is not true, the random error in the acceleration
measurement should be thought of as including this
error as well as the sensor error itself.

In Fig. 3, Pgy is the maximum covariance of
y in the steady state. It is this value which is of
primary interest. Because of the assumption of no
initial error in position estimation, Py, starts from
zero value, and grows according to Eq. (5). When
the vision data is available, Py, is decrcased by the
measurement update, i.e. Eq. (9). In steady state,
this decrease must be equal to the increase given by
Eq. (5). It is shown that the value of Py, obeys {7]

A?/(A+1)~N(A+2)y/NB/(A + 1)+B(2N3+N)/12 =0

(10)
where
A =Pyu/R,
B = T*Rw/Ry
Notice that A is normalized variance in the
maximum error of the position estimation. If A

is less than one, the system always has an expected
error variance less than that of the vision system at
the instant of the measurement. A can be greater
than onc because the maximum error occurs just
BEFORE vision measurement. Fig. 4 is a design
graph that relates A and B over a large range of

possible values.

Time

Fig. 3  Position error covariance vs. time, P(0)= 0

189

i

A= PiyRv

N= 10

10
jL 108 102 jiy 100 10° 0% 107 10 100
B = T4 RwRv

Fig. 4 Design referenca plot of N, T, R, and R,

EXPERIMENT

Experiments on the estimation of the velocity
and displacement of the flexible beam end point
were made by combining an accelerometer and ma-
chine vision. By integrating the signal from the
accelerometer attached to the beam end point, the
velocity and position of the end point can be esti-
mated. These estimated velocity and position data
are corrected by vision data using the Kalman fil-
ter. To determine the Kalman filter gains, the noisc
levels of the accelerometer output signal and vision

system data were measured.

Experimental devices

Fig. 5 shows the schematic diagram of the ex-
perimental setup. The flexible beam, which has the
length of 28.5 inches, the thickness of 1/8 inches,
and the width of 1.5 inches, is made of aluminum.
A linear moving coil actuator, which is composed
of a coil and permanent magnet (proof mass), was
mounted on the top of the beam. This coil was fixed
on the beam so that the generated magnetic force
could be transferred to an end point of a beam di-
rectly, and permanent magnet was attached through

a flexure spring to the beam.
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Fig. 5 Experimental setup



A piezoresistive type accelerometer, the model
mimber of 3026-05-S manufactured from ICSensors
[2], was attached at the end point of the beam. The
accelerometer output signal was connected to a 32-
bit MC68020 microprocessor [6] through an A/D
converter. The main function of the MC63020 was
sampling of the acceleration and vision data, and
executing the Kalman filter algorithm of Eq. (5)
and (7).

A landmark tracking system (LTS) was used
for measuring the end point displacement of a flex-
ible beam. The LTS [1,5] consists of a grey level
CCD, a microcomputer (MC68000), a strobe unit,
and software for tracking retroreflective landmarks.
The retroreflective landmark attached to the beam
end point is illuminated by the strobe unit. Because
the landmark is much brighter than the other ob-
jects in the field of view if properly illuminated, it
is mapped as very distinct spot on CCD array. This
resulting image is transferred to the video RAM and
processed by MC68000 computer of the LTS to cal-
culate the landmark position. This position data
were fed into MC68020 (the main controller) via a

parallel communication.

Experimental results

The sampling rate of the acceleration of a beam
end point was 2 msec. At every 100 msec, vision
data were sampled. The noise levels of the LTS and
accelerometer were determined by taking standard
deviations of data being collected from a stationary
state of the flexible beam. From the experimental
data of the noise levels in Table 1, and this sampling
relation, the Kalman filter gains can be found by
Eq. (8).
0.8603 for the position, and 7.2671 for the velocity

The steady state Kalman filter gains are

correction. The steady state Kalman filter gain for
the position correction is close to 1, which means the
accuracy of vision data is much better than that of

an accelerometer.

Two kinds of experiment were made. One was
the estimation of position and velocity of a beam
end point for the free vibration motion of a beam,
and the other was about forced vibration by the
moving coil actuator. For the free vibration, a flex-
ible beam was initially disturbed by hand. It was

a large scale motion from +1 to -1 inches. For the
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forced vibration, the beam was excited by the mov-
ing coil actuator attached to the beam end point.
The excitation signal, a sinc wave, from a function
generator was amplified through a current ampli-
fier. The forced vibration motion was a small scale
motion from +0.1 to -0.1 inches.

Fig. 6 and Fig. 7 show the estimated position,
velocity and the sensed acceleration of a beam end
point for a free vibration motion. The mark 'x" in
Fig. 6 represents a vision data from the LTS. The
sudden rises and drops in the position and velocity
estimation signals were the results from a correction
by the Kalman filter. The first natural frequency of
this flexible beam, which is about 1.5 Hz, can be

identified experimentally from the Fig. 7.
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Table 1 Experimental data of the LTS and accelerometer

Mean | Standard deviation

End point displacement /Pixel (inches) | 4.4724x1077 x
Resolution of the LTS {inches) x 1.0459x10-7
Sensitivity of accelerometer (in/s*) 1.0913x107 X
Resolution of accelerometer (in/s?) X 1.4437




Fig. 8 and Fig. 9 show the estimated signals
for the forced vibration of about 2 Hz. Because of
a small magnitude of acceleration, the noise in ac-
celeration was seen clearly in Fig. 9. Even for this
noisy acceleration signal, Fig. 8 shows that the posi-
tion estimation by the Kalman filtering works well
in recovering the movement of a beam end point.
Because the frequency of this forced excitation (2
Hz) was close to the first natural frequency (1.5 Hz)
of the flexible beam, the beat phenomenon could be
occurred. The variation of the peak values in Fig.
8 and Fig. 9 is the result from the composition of a
transient response, mainly by the first mode of the
beam vibration, and a forced response.

For a high frequency excitation above 10 He,
the steady state response magnitude of the end point
displacement was much smaller than that of the
transient response. To sce the steady state response

only, all the data were collected after 30 seconds
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Fig. 8 Estimated position (Forced vibration: 2 Hz)
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Fig. 9 Estimated velocity and sensed acceleration (2 Hz)
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from the instance of starting a forced vibration.

Fig. 10 and Fig. 11 arc the estimated signals
at steady state, when a flexible beam is excited by
about 14 Hz sine wave signal. When the forced sig-
nal frequency is above 5 Hz, the vision sensor, which
has a bandwidth of 10 Hz, can not recover the move-
ment of a beam end point by the sampling theoremn.
As can be seen from Fig. 10, the measurement by
a vision system does not have a 14 Hz signal. But,
tlic estimated position shows clearly this frequency.
Fig. 12 and Fig. 13 show the estimated signals at
steady state for the input frequency of about 28 Hz.
In Fig. 11 and Fig. 13, the acceleration signal is
shifted intentionally for a clear display. Because the
Hexible heam is very lightly damped, the position
estimation signals in Fig. 10 and Fig. 12 still have
the transient response, even after 30 seconds from

the initiation of a forced vibration.

The performance of the Kalman filtering for
this combination of an accelerometer and vision sys-
tem can be found by Eq. (10). By substituting the
sampling rate of accelerometer, the covariance of an
accelerometer noise and vision measurement noise,
the non-dimensional parameter, B, can be calcu-
lated. The corresponding value of A, which is the
ratio of the error covariance of estimated position
tn the covariance of a vision measurement noise, is
6.1599. Hence, the magnitude of error in the posi-
tion estimation is 2.4819 times worse than the accu-
racy of the vision measurement. By using a better
accelerometer, this error magnitude can be reduced
to the order smaller than the accuracy of the vision

system.
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CONCLUSION

Errors due to accelerometer dynamics are mini-
mized by smaller value of damping ratios and larger
values of natural frequency provided that the natu-
ral frequency of the accelerometer is well above all
significant frequencies in the motion being made.

A discrete Kalman filter to minimize the ef-
fects of noise in sensed acceleration and position
was designed. A design equation relating the noises
in the two measurements and error in the position
estimate was derived. The position estimator using
accelerometer and vision measurement showed good
experimental results in recovering the movement of
an object between each vision measurement even at
a high frequency beyond the bandwidth of a vision

measurement.
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